Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prdstotbnd Structured version   Visualization version   GIF version

Theorem prdstotbnd 32763
Description: The product metric over finite index set is totally bounded if all the factors are totally bounded. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
prdsbnd.y 𝑌 = (𝑆Xs𝑅)
prdsbnd.b 𝐵 = (Base‘𝑌)
prdsbnd.v 𝑉 = (Base‘(𝑅𝑥))
prdsbnd.e 𝐸 = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉))
prdsbnd.d 𝐷 = (dist‘𝑌)
prdsbnd.s (𝜑𝑆𝑊)
prdsbnd.i (𝜑𝐼 ∈ Fin)
prdsbnd.r (𝜑𝑅 Fn 𝐼)
prdstotbnd.m ((𝜑𝑥𝐼) → 𝐸 ∈ (TotBnd‘𝑉))
Assertion
Ref Expression
prdstotbnd (𝜑𝐷 ∈ (TotBnd‘𝐵))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐵   𝜑,𝑥   𝑥,𝐼   𝑥,𝑆   𝑥,𝑌
Allowed substitution hints:   𝐷(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem prdstotbnd
Dummy variables 𝑧 𝑟 𝑓 𝑔 𝑣 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))
2 eqid 2610 . . . 4 (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
3 prdsbnd.v . . . 4 𝑉 = (Base‘(𝑅𝑥))
4 prdsbnd.e . . . 4 𝐸 = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉))
5 eqid 2610 . . . 4 (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
6 prdsbnd.s . . . 4 (𝜑𝑆𝑊)
7 prdsbnd.i . . . 4 (𝜑𝐼 ∈ Fin)
8 fvex 6113 . . . . 5 (𝑅𝑥) ∈ V
98a1i 11 . . . 4 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ V)
10 prdstotbnd.m . . . . 5 ((𝜑𝑥𝐼) → 𝐸 ∈ (TotBnd‘𝑉))
11 totbndmet 32741 . . . . 5 (𝐸 ∈ (TotBnd‘𝑉) → 𝐸 ∈ (Met‘𝑉))
1210, 11syl 17 . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
131, 2, 3, 4, 5, 6, 7, 9, 12prdsmet 21985 . . 3 (𝜑 → (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) ∈ (Met‘(Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))))
14 prdsbnd.d . . . 4 𝐷 = (dist‘𝑌)
15 prdsbnd.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
16 prdsbnd.r . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
17 dffn5 6151 . . . . . . . 8 (𝑅 Fn 𝐼𝑅 = (𝑥𝐼 ↦ (𝑅𝑥)))
1816, 17sylib 207 . . . . . . 7 (𝜑𝑅 = (𝑥𝐼 ↦ (𝑅𝑥)))
1918oveq2d 6565 . . . . . 6 (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
2015, 19syl5eq 2656 . . . . 5 (𝜑𝑌 = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
2120fveq2d 6107 . . . 4 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2214, 21syl5eq 2656 . . 3 (𝜑𝐷 = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
23 prdsbnd.b . . . . 5 𝐵 = (Base‘𝑌)
2420fveq2d 6107 . . . . 5 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2523, 24syl5eq 2656 . . . 4 (𝜑𝐵 = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2625fveq2d 6107 . . 3 (𝜑 → (Met‘𝐵) = (Met‘(Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))))
2713, 22, 263eltr4d 2703 . 2 (𝜑𝐷 ∈ (Met‘𝐵))
287adantr 480 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝐼 ∈ Fin)
29 istotbnd3 32740 . . . . . . . . . . 11 (𝐸 ∈ (TotBnd‘𝑉) ↔ (𝐸 ∈ (Met‘𝑉) ∧ ∀𝑟 ∈ ℝ+𝑤 ∈ (𝒫 𝑉 ∩ Fin) 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉))
3029simprbi 479 . . . . . . . . . 10 (𝐸 ∈ (TotBnd‘𝑉) → ∀𝑟 ∈ ℝ+𝑤 ∈ (𝒫 𝑉 ∩ Fin) 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉)
3110, 30syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → ∀𝑟 ∈ ℝ+𝑤 ∈ (𝒫 𝑉 ∩ Fin) 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉)
3231r19.21bi 2916 . . . . . . . 8 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ+) → ∃𝑤 ∈ (𝒫 𝑉 ∩ Fin) 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉)
33 df-rex 2902 . . . . . . . . 9 (∃𝑤 ∈ (𝒫 𝑉 ∩ Fin) 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉 ↔ ∃𝑤(𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉))
34 rexv 3193 . . . . . . . . 9 (∃𝑤 ∈ V (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉) ↔ ∃𝑤(𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉))
3533, 34bitr4i 266 . . . . . . . 8 (∃𝑤 ∈ (𝒫 𝑉 ∩ Fin) 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉 ↔ ∃𝑤 ∈ V (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉))
3632, 35sylib 207 . . . . . . 7 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ+) → ∃𝑤 ∈ V (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉))
3736an32s 842 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝐼) → ∃𝑤 ∈ V (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉))
3837ralrimiva 2949 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → ∀𝑥𝐼𝑤 ∈ V (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉))
39 eleq1 2676 . . . . . . 7 (𝑤 = (𝑓𝑥) → (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ↔ (𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin)))
40 iuneq1 4470 . . . . . . . 8 (𝑤 = (𝑓𝑥) → 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟))
4140eqeq1d 2612 . . . . . . 7 (𝑤 = (𝑓𝑥) → ( 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))
4239, 41anbi12d 743 . . . . . 6 (𝑤 = (𝑓𝑥) → ((𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉) ↔ ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉)))
4342ac6sfi 8089 . . . . 5 ((𝐼 ∈ Fin ∧ ∀𝑥𝐼𝑤 ∈ V (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉)) → ∃𝑓(𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉)))
4428, 38, 43syl2anc 691 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑓(𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉)))
45 elfpw 8151 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ↔ ((𝑓𝑥) ⊆ 𝑉 ∧ (𝑓𝑥) ∈ Fin))
4645simplbi 475 . . . . . . . . . . 11 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) → (𝑓𝑥) ⊆ 𝑉)
4746adantr 480 . . . . . . . . . 10 (((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉) → (𝑓𝑥) ⊆ 𝑉)
4847ralimi 2936 . . . . . . . . 9 (∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉) → ∀𝑥𝐼 (𝑓𝑥) ⊆ 𝑉)
4948ad2antll 761 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → ∀𝑥𝐼 (𝑓𝑥) ⊆ 𝑉)
50 ss2ixp 7807 . . . . . . . 8 (∀𝑥𝐼 (𝑓𝑥) ⊆ 𝑉X𝑥𝐼 (𝑓𝑥) ⊆ X𝑥𝐼 𝑉)
5149, 50syl 17 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → X𝑥𝐼 (𝑓𝑥) ⊆ X𝑥𝐼 𝑉)
52 fnfi 8123 . . . . . . . . . . 11 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → 𝑅 ∈ Fin)
5316, 7, 52syl2anc 691 . . . . . . . . . 10 (𝜑𝑅 ∈ Fin)
54 fndm 5904 . . . . . . . . . . 11 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
5516, 54syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑅 = 𝐼)
5615, 6, 53, 23, 55prdsbas 15940 . . . . . . . . 9 (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
573rgenw 2908 . . . . . . . . . 10 𝑥𝐼 𝑉 = (Base‘(𝑅𝑥))
58 ixpeq2 7808 . . . . . . . . . 10 (∀𝑥𝐼 𝑉 = (Base‘(𝑅𝑥)) → X𝑥𝐼 𝑉 = X𝑥𝐼 (Base‘(𝑅𝑥)))
5957, 58ax-mp 5 . . . . . . . . 9 X𝑥𝐼 𝑉 = X𝑥𝐼 (Base‘(𝑅𝑥))
6056, 59syl6eqr 2662 . . . . . . . 8 (𝜑𝐵 = X𝑥𝐼 𝑉)
6160ad2antrr 758 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → 𝐵 = X𝑥𝐼 𝑉)
6251, 61sseqtr4d 3605 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → X𝑥𝐼 (𝑓𝑥) ⊆ 𝐵)
6328adantr 480 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → 𝐼 ∈ Fin)
6445simprbi 479 . . . . . . . . . 10 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) → (𝑓𝑥) ∈ Fin)
6564adantr 480 . . . . . . . . 9 (((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉) → (𝑓𝑥) ∈ Fin)
6665ralimi 2936 . . . . . . . 8 (∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉) → ∀𝑥𝐼 (𝑓𝑥) ∈ Fin)
6766ad2antll 761 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → ∀𝑥𝐼 (𝑓𝑥) ∈ Fin)
68 ixpfi 8146 . . . . . . 7 ((𝐼 ∈ Fin ∧ ∀𝑥𝐼 (𝑓𝑥) ∈ Fin) → X𝑥𝐼 (𝑓𝑥) ∈ Fin)
6963, 67, 68syl2anc 691 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → X𝑥𝐼 (𝑓𝑥) ∈ Fin)
70 elfpw 8151 . . . . . 6 (X𝑥𝐼 (𝑓𝑥) ∈ (𝒫 𝐵 ∩ Fin) ↔ (X𝑥𝐼 (𝑓𝑥) ⊆ 𝐵X𝑥𝐼 (𝑓𝑥) ∈ Fin))
7162, 69, 70sylanbrc 695 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → X𝑥𝐼 (𝑓𝑥) ∈ (𝒫 𝐵 ∩ Fin))
72 metxmet 21949 . . . . . . . . . . 11 (𝐷 ∈ (Met‘𝐵) → 𝐷 ∈ (∞Met‘𝐵))
7327, 72syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (∞Met‘𝐵))
74 rpxr 11716 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
75 blssm 22033 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑦𝐵𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵)
76753expa 1257 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑦𝐵) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵)
7776an32s 842 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑟 ∈ ℝ*) ∧ 𝑦𝐵) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵)
7877ralrimiva 2949 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑟 ∈ ℝ*) → ∀𝑦𝐵 (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵)
7973, 74, 78syl2an 493 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ∀𝑦𝐵 (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵)
8079adantr 480 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → ∀𝑦𝐵 (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵)
81 ssralv 3629 . . . . . . . 8 (X𝑥𝐼 (𝑓𝑥) ⊆ 𝐵 → (∀𝑦𝐵 (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵 → ∀𝑦X 𝑥𝐼 (𝑓𝑥)(𝑦(ball‘𝐷)𝑟) ⊆ 𝐵))
8262, 80, 81sylc 63 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → ∀𝑦X 𝑥𝐼 (𝑓𝑥)(𝑦(ball‘𝐷)𝑟) ⊆ 𝐵)
83 iunss 4497 . . . . . . 7 ( 𝑦X 𝑥𝐼 (𝑓𝑥)(𝑦(ball‘𝐷)𝑟) ⊆ 𝐵 ↔ ∀𝑦X 𝑥𝐼 (𝑓𝑥)(𝑦(ball‘𝐷)𝑟) ⊆ 𝐵)
8482, 83sylibr 223 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → 𝑦X 𝑥𝐼 (𝑓𝑥)(𝑦(ball‘𝐷)𝑟) ⊆ 𝐵)
8563adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) → 𝐼 ∈ Fin)
8661eleq2d 2673 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → (𝑔𝐵𝑔X𝑥𝐼 𝑉))
87 vex 3176 . . . . . . . . . . . . . . . 16 𝑔 ∈ V
8887elixp 7801 . . . . . . . . . . . . . . 15 (𝑔X𝑥𝐼 𝑉 ↔ (𝑔 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉))
8988simprbi 479 . . . . . . . . . . . . . 14 (𝑔X𝑥𝐼 𝑉 → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
90 df-rex 2902 . . . . . . . . . . . . . . . . . . . 20 (∃𝑧 ∈ (𝑓𝑥)(𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟) ↔ ∃𝑧(𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟)))
91 eliun 4460 . . . . . . . . . . . . . . . . . . . 20 ((𝑔𝑥) ∈ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) ↔ ∃𝑧 ∈ (𝑓𝑥)(𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟))
92 rexv 3193 . . . . . . . . . . . . . . . . . . . 20 (∃𝑧 ∈ V (𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟)) ↔ ∃𝑧(𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟)))
9390, 91, 923bitr4i 291 . . . . . . . . . . . . . . . . . . 19 ((𝑔𝑥) ∈ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) ↔ ∃𝑧 ∈ V (𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟)))
94 eleq2 2677 . . . . . . . . . . . . . . . . . . 19 ( 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉 → ((𝑔𝑥) ∈ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) ↔ (𝑔𝑥) ∈ 𝑉))
9593, 94syl5bbr 273 . . . . . . . . . . . . . . . . . 18 ( 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉 → (∃𝑧 ∈ V (𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟)) ↔ (𝑔𝑥) ∈ 𝑉))
9695biimprd 237 . . . . . . . . . . . . . . . . 17 ( 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉 → ((𝑔𝑥) ∈ 𝑉 → ∃𝑧 ∈ V (𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟))))
9796adantl 481 . . . . . . . . . . . . . . . 16 (((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉) → ((𝑔𝑥) ∈ 𝑉 → ∃𝑧 ∈ V (𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟))))
9897ral2imi 2931 . . . . . . . . . . . . . . 15 (∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉) → (∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉 → ∀𝑥𝐼𝑧 ∈ V (𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟))))
9998ad2antll 761 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → (∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉 → ∀𝑥𝐼𝑧 ∈ V (𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟))))
10089, 99syl5 33 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → (𝑔X𝑥𝐼 𝑉 → ∀𝑥𝐼𝑧 ∈ V (𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟))))
10186, 100sylbid 229 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → (𝑔𝐵 → ∀𝑥𝐼𝑧 ∈ V (𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟))))
102101imp 444 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) → ∀𝑥𝐼𝑧 ∈ V (𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟)))
103 eleq1 2676 . . . . . . . . . . . . 13 (𝑧 = (𝑦𝑥) → (𝑧 ∈ (𝑓𝑥) ↔ (𝑦𝑥) ∈ (𝑓𝑥)))
104 oveq1 6556 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑥) → (𝑧(ball‘𝐸)𝑟) = ((𝑦𝑥)(ball‘𝐸)𝑟))
105104eleq2d 2673 . . . . . . . . . . . . 13 (𝑧 = (𝑦𝑥) → ((𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟) ↔ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))
106103, 105anbi12d 743 . . . . . . . . . . . 12 (𝑧 = (𝑦𝑥) → ((𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟)) ↔ ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟))))
107106ac6sfi 8089 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ ∀𝑥𝐼𝑧 ∈ V (𝑧 ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ (𝑧(ball‘𝐸)𝑟))) → ∃𝑦(𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟))))
10885, 102, 107syl2anc 691 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) → ∃𝑦(𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟))))
109 ffn 5958 . . . . . . . . . . . . . . . . 17 (𝑦:𝐼⟶V → 𝑦 Fn 𝐼)
110 simpl 472 . . . . . . . . . . . . . . . . . 18 (((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)) → (𝑦𝑥) ∈ (𝑓𝑥))
111110ralimi 2936 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)) → ∀𝑥𝐼 (𝑦𝑥) ∈ (𝑓𝑥))
112109, 111anim12i 588 . . . . . . . . . . . . . . . 16 ((𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟))) → (𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ (𝑓𝑥)))
113 vex 3176 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
114113elixp 7801 . . . . . . . . . . . . . . . 16 (𝑦X𝑥𝐼 (𝑓𝑥) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ (𝑓𝑥)))
115112, 114sylibr 223 . . . . . . . . . . . . . . 15 ((𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟))) → 𝑦X𝑥𝐼 (𝑓𝑥))
116115adantl 481 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → 𝑦X𝑥𝐼 (𝑓𝑥))
11786biimpa 500 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) → 𝑔X𝑥𝐼 𝑉)
118 ixpfn 7800 . . . . . . . . . . . . . . . . . 18 (𝑔X𝑥𝐼 𝑉𝑔 Fn 𝐼)
119117, 118syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) → 𝑔 Fn 𝐼)
120119adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → 𝑔 Fn 𝐼)
121 simpr 476 . . . . . . . . . . . . . . . . . 18 (((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)) → (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟))
122121ralimi 2936 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)) → ∀𝑥𝐼 (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟))
123122ad2antll 761 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → ∀𝑥𝐼 (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟))
12487elixp 7801 . . . . . . . . . . . . . . . 16 (𝑔X𝑥𝐼 ((𝑦𝑥)(ball‘𝐸)𝑟) ↔ (𝑔 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))
125120, 123, 124sylanbrc 695 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → 𝑔X𝑥𝐼 ((𝑦𝑥)(ball‘𝐸)𝑟))
126 simp-4l 802 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → 𝜑)
12751ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → X𝑥𝐼 (𝑓𝑥) ⊆ X𝑥𝐼 𝑉)
128127, 116sseldd 3569 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → 𝑦X𝑥𝐼 𝑉)
129126, 60syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → 𝐵 = X𝑥𝐼 𝑉)
130128, 129eleqtrrd 2691 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → 𝑦𝐵)
131 simp-4r 803 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → 𝑟 ∈ ℝ+)
132 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑥 → (𝑅𝑦) = (𝑅𝑥))
133132cbvmptv 4678 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐼 ↦ (𝑅𝑦)) = (𝑥𝐼 ↦ (𝑅𝑥))
134133oveq2i 6560 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦))) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))
13520, 134syl6eqr 2662 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 = (𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦))))
136135fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))
13714, 136syl5eq 2656 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 = (dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))
138137fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ball‘𝐷) = (ball‘(dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦))))))
139138oveqdr 6573 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝐵𝑟 ∈ ℝ+)) → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘(dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))𝑟))
140 eqid 2610 . . . . . . . . . . . . . . . . . 18 (Base‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))) = (Base‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦))))
141 eqid 2610 . . . . . . . . . . . . . . . . . 18 (dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))) = (dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦))))
1426adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦𝐵𝑟 ∈ ℝ+)) → 𝑆𝑊)
1437adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦𝐵𝑟 ∈ ℝ+)) → 𝐼 ∈ Fin)
1448a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (𝑅𝑥) ∈ V)
145 metxmet 21949 . . . . . . . . . . . . . . . . . . . 20 (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉))
14612, 145syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
147146adantlr 747 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
148 simprl 790 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦𝐵𝑟 ∈ ℝ+)) → 𝑦𝐵)
149135fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))
15023, 149syl5eq 2656 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 = (Base‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))
151150adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦𝐵𝑟 ∈ ℝ+)) → 𝐵 = (Base‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))
152148, 151eleqtrd 2690 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦𝐵𝑟 ∈ ℝ+)) → 𝑦 ∈ (Base‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))
15374ad2antll 761 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦𝐵𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
154 rpgt0 11720 . . . . . . . . . . . . . . . . . . 19 (𝑟 ∈ ℝ+ → 0 < 𝑟)
155154ad2antll 761 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦𝐵𝑟 ∈ ℝ+)) → 0 < 𝑟)
156134, 140, 3, 4, 141, 142, 143, 144, 147, 152, 153, 155prdsbl 22106 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝐵𝑟 ∈ ℝ+)) → (𝑦(ball‘(dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))𝑟) = X𝑥𝐼 ((𝑦𝑥)(ball‘𝐸)𝑟))
157139, 156eqtrd 2644 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐵𝑟 ∈ ℝ+)) → (𝑦(ball‘𝐷)𝑟) = X𝑥𝐼 ((𝑦𝑥)(ball‘𝐸)𝑟))
158126, 130, 131, 157syl12anc 1316 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → (𝑦(ball‘𝐷)𝑟) = X𝑥𝐼 ((𝑦𝑥)(ball‘𝐸)𝑟))
159125, 158eleqtrrd 2691 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → 𝑔 ∈ (𝑦(ball‘𝐷)𝑟))
160116, 159jca 553 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟)))) → (𝑦X𝑥𝐼 (𝑓𝑥) ∧ 𝑔 ∈ (𝑦(ball‘𝐷)𝑟)))
161160ex 449 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) → ((𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟))) → (𝑦X𝑥𝐼 (𝑓𝑥) ∧ 𝑔 ∈ (𝑦(ball‘𝐷)𝑟))))
162161eximdv 1833 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) → (∃𝑦(𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟))) → ∃𝑦(𝑦X𝑥𝐼 (𝑓𝑥) ∧ 𝑔 ∈ (𝑦(ball‘𝐷)𝑟))))
163 df-rex 2902 . . . . . . . . . . 11 (∃𝑦X 𝑥𝐼 (𝑓𝑥)𝑔 ∈ (𝑦(ball‘𝐷)𝑟) ↔ ∃𝑦(𝑦X𝑥𝐼 (𝑓𝑥) ∧ 𝑔 ∈ (𝑦(ball‘𝐷)𝑟)))
164162, 163syl6ibr 241 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) → (∃𝑦(𝑦:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑦𝑥) ∈ (𝑓𝑥) ∧ (𝑔𝑥) ∈ ((𝑦𝑥)(ball‘𝐸)𝑟))) → ∃𝑦X 𝑥𝐼 (𝑓𝑥)𝑔 ∈ (𝑦(ball‘𝐷)𝑟)))
165108, 164mpd 15 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔𝐵) → ∃𝑦X 𝑥𝐼 (𝑓𝑥)𝑔 ∈ (𝑦(ball‘𝐷)𝑟))
166165ex 449 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → (𝑔𝐵 → ∃𝑦X 𝑥𝐼 (𝑓𝑥)𝑔 ∈ (𝑦(ball‘𝐷)𝑟)))
167 eliun 4460 . . . . . . . 8 (𝑔 𝑦X 𝑥𝐼 (𝑓𝑥)(𝑦(ball‘𝐷)𝑟) ↔ ∃𝑦X 𝑥𝐼 (𝑓𝑥)𝑔 ∈ (𝑦(ball‘𝐷)𝑟))
168166, 167syl6ibr 241 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → (𝑔𝐵𝑔 𝑦X 𝑥𝐼 (𝑓𝑥)(𝑦(ball‘𝐷)𝑟)))
169168ssrdv 3574 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → 𝐵 𝑦X 𝑥𝐼 (𝑓𝑥)(𝑦(ball‘𝐷)𝑟))
17084, 169eqssd 3585 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → 𝑦X 𝑥𝐼 (𝑓𝑥)(𝑦(ball‘𝐷)𝑟) = 𝐵)
171 iuneq1 4470 . . . . . . 7 (𝑣 = X𝑥𝐼 (𝑓𝑥) → 𝑦𝑣 (𝑦(ball‘𝐷)𝑟) = 𝑦X 𝑥𝐼 (𝑓𝑥)(𝑦(ball‘𝐷)𝑟))
172171eqeq1d 2612 . . . . . 6 (𝑣 = X𝑥𝐼 (𝑓𝑥) → ( 𝑦𝑣 (𝑦(ball‘𝐷)𝑟) = 𝐵 𝑦X 𝑥𝐼 (𝑓𝑥)(𝑦(ball‘𝐷)𝑟) = 𝐵))
173172rspcev 3282 . . . . 5 ((X𝑥𝐼 (𝑓𝑥) ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑦X 𝑥𝐼 (𝑓𝑥)(𝑦(ball‘𝐷)𝑟) = 𝐵) → ∃𝑣 ∈ (𝒫 𝐵 ∩ Fin) 𝑦𝑣 (𝑦(ball‘𝐷)𝑟) = 𝐵)
17471, 170, 173syl2anc 691 . . . 4 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥𝐼 ((𝑓𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝑧 ∈ (𝑓𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → ∃𝑣 ∈ (𝒫 𝐵 ∩ Fin) 𝑦𝑣 (𝑦(ball‘𝐷)𝑟) = 𝐵)
17544, 174exlimddv 1850 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑣 ∈ (𝒫 𝐵 ∩ Fin) 𝑦𝑣 (𝑦(ball‘𝐷)𝑟) = 𝐵)
176175ralrimiva 2949 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑣 ∈ (𝒫 𝐵 ∩ Fin) 𝑦𝑣 (𝑦(ball‘𝐷)𝑟) = 𝐵)
177 istotbnd3 32740 . 2 (𝐷 ∈ (TotBnd‘𝐵) ↔ (𝐷 ∈ (Met‘𝐵) ∧ ∀𝑟 ∈ ℝ+𝑣 ∈ (𝒫 𝐵 ∩ Fin) 𝑦𝑣 (𝑦(ball‘𝐷)𝑟) = 𝐵))
17827, 176, 177sylanbrc 695 1 (𝜑𝐷 ∈ (TotBnd‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   ciun 4455   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  cres 5040   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Xcixp 7794  Fincfn 7841  0cc0 9815  *cxr 9952   < clt 9953  +crp 11708  Basecbs 15695  distcds 15777  Xscprds 15929  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554  TotBndctotbnd 32735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-prds 15931  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-totbnd 32737
This theorem is referenced by:  prdsbnd2  32764
  Copyright terms: Public domain W3C validator