MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdscrngd Structured version   Visualization version   GIF version

Theorem prdscrngd 18436
Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdscrngd.y 𝑌 = (𝑆Xs𝑅)
prdscrngd.i (𝜑𝐼𝑊)
prdscrngd.s (𝜑𝑆𝑉)
prdscrngd.r (𝜑𝑅:𝐼⟶CRing)
Assertion
Ref Expression
prdscrngd (𝜑𝑌 ∈ CRing)

Proof of Theorem prdscrngd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdscrngd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdscrngd.i . . 3 (𝜑𝐼𝑊)
3 prdscrngd.s . . 3 (𝜑𝑆𝑉)
4 prdscrngd.r . . . 4 (𝜑𝑅:𝐼⟶CRing)
5 crngring 18381 . . . . 5 (𝑥 ∈ CRing → 𝑥 ∈ Ring)
65ssriv 3572 . . . 4 CRing ⊆ Ring
7 fss 5969 . . . 4 ((𝑅:𝐼⟶CRing ∧ CRing ⊆ Ring) → 𝑅:𝐼⟶Ring)
84, 6, 7sylancl 693 . . 3 (𝜑𝑅:𝐼⟶Ring)
91, 2, 3, 8prdsringd 18435 . 2 (𝜑𝑌 ∈ Ring)
10 eqid 2610 . . . 4 (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅))
11 fnmgp 18314 . . . . . . 7 mulGrp Fn V
12 ssv 3588 . . . . . . 7 CRing ⊆ V
13 fnssres 5918 . . . . . . 7 ((mulGrp Fn V ∧ CRing ⊆ V) → (mulGrp ↾ CRing) Fn CRing)
1411, 12, 13mp2an 704 . . . . . 6 (mulGrp ↾ CRing) Fn CRing
15 fvres 6117 . . . . . . . 8 (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) = (mulGrp‘𝑥))
16 eqid 2610 . . . . . . . . 9 (mulGrp‘𝑥) = (mulGrp‘𝑥)
1716crngmgp 18378 . . . . . . . 8 (𝑥 ∈ CRing → (mulGrp‘𝑥) ∈ CMnd)
1815, 17eqeltrd 2688 . . . . . . 7 (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd)
1918rgen 2906 . . . . . 6 𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd
20 ffnfv 6295 . . . . . 6 ((mulGrp ↾ CRing):CRing⟶CMnd ↔ ((mulGrp ↾ CRing) Fn CRing ∧ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd))
2114, 19, 20mpbir2an 957 . . . . 5 (mulGrp ↾ CRing):CRing⟶CMnd
22 fco2 5972 . . . . 5 (((mulGrp ↾ CRing):CRing⟶CMnd ∧ 𝑅:𝐼⟶CRing) → (mulGrp ∘ 𝑅):𝐼⟶CMnd)
2321, 4, 22sylancr 694 . . . 4 (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶CMnd)
2410, 2, 3, 23prdscmnd 18087 . . 3 (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd)
25 eqidd 2611 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
26 eqid 2610 . . . . . 6 (mulGrp‘𝑌) = (mulGrp‘𝑌)
27 ffn 5958 . . . . . . 7 (𝑅:𝐼⟶CRing → 𝑅 Fn 𝐼)
284, 27syl 17 . . . . . 6 (𝜑𝑅 Fn 𝐼)
291, 26, 10, 2, 3, 28prdsmgp 18433 . . . . 5 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))))
3029simpld 474 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))))
3129simprd 478 . . . . 5 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))
3231oveqdr 6573 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦))
3325, 30, 32cmnpropd 18025 . . 3 (𝜑 → ((mulGrp‘𝑌) ∈ CMnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd))
3424, 33mpbird 246 . 2 (𝜑 → (mulGrp‘𝑌) ∈ CMnd)
3526iscrng 18377 . 2 (𝑌 ∈ CRing ↔ (𝑌 ∈ Ring ∧ (mulGrp‘𝑌) ∈ CMnd))
369, 34, 35sylanbrc 695 1 (𝜑𝑌 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  cres 5040  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Xscprds 15929  CMndccmn 18016  mulGrpcmgp 18312  Ringcrg 18370  CRingccrg 18371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-cmn 18018  df-mgp 18313  df-ring 18372  df-cring 18373
This theorem is referenced by:  pwscrng  18440
  Copyright terms: Public domain W3C validator