Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pp0ex Structured version   Visualization version   GIF version

Theorem pp0ex 4781
 Description: The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.)
Assertion
Ref Expression
pp0ex {∅, {∅}} ∈ V

Proof of Theorem pp0ex
StepHypRef Expression
1 pwpw0 4284 . 2 𝒫 {∅} = {∅, {∅}}
2 p0ex 4779 . . 3 {∅} ∈ V
32pwex 4774 . 2 𝒫 {∅} ∈ V
41, 3eqeltrri 2685 1 {∅, {∅}} ∈ V
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 1977  Vcvv 3173  ∅c0 3874  𝒫 cpw 4108  {csn 4125  {cpr 4127 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126  df-pr 4128 This theorem is referenced by:  ord3ex  4782  zfpair  4831
 Copyright terms: Public domain W3C validator