Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  potr Structured version   Visualization version   GIF version

Theorem potr 4971
 Description: A partial order relation is a transitive relation. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
potr ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))

Proof of Theorem potr
StepHypRef Expression
1 pocl 4966 . . 3 (𝑅 Po 𝐴 → ((𝐵𝐴𝐶𝐴𝐷𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))))
21imp 444 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷)))
32simprd 478 1 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   ∈ wcel 1977   class class class wbr 4583   Po wpo 4957 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-po 4959 This theorem is referenced by:  po2nr  4972  po3nr  4973  pofun  4975  sotr  4981  poltletr  5447  predpo  5615  poxp  7176  frfi  8090  wemaplem2  8335  sornom  8982  zorn2lem7  9207  pospo  16796  pocnv  30907  poseq  30994  seqpo  32713
 Copyright terms: Public domain W3C validator