Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  posn Structured version   Visualization version   GIF version

Theorem posn 5110
 Description: Partial ordering of a singleton. (Contributed by NM, 27-Apr-2009.) (Revised by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
posn (Rel 𝑅 → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))

Proof of Theorem posn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 po0 4974 . . . . . 6 𝑅 Po ∅
2 snprc 4197 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
3 poeq2 4963 . . . . . . 7 ({𝐴} = ∅ → (𝑅 Po {𝐴} ↔ 𝑅 Po ∅))
42, 3sylbi 206 . . . . . 6 𝐴 ∈ V → (𝑅 Po {𝐴} ↔ 𝑅 Po ∅))
51, 4mpbiri 247 . . . . 5 𝐴 ∈ V → 𝑅 Po {𝐴})
65adantl 481 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → 𝑅 Po {𝐴})
7 brrelex 5080 . . . . 5 ((Rel 𝑅𝐴𝑅𝐴) → 𝐴 ∈ V)
87stoic1a 1688 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝐴)
96, 82thd 254 . . 3 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
109ex 449 . 2 (Rel 𝑅 → (¬ 𝐴 ∈ V → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴)))
11 df-po 4959 . . 3 (𝑅 Po {𝐴} ↔ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
12 breq2 4587 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝑦𝑅𝑧𝑦𝑅𝐴))
1312anbi2d 736 . . . . . . . . . 10 (𝑧 = 𝐴 → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦𝑦𝑅𝐴)))
14 breq2 4587 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝑥𝑅𝑧𝑥𝑅𝐴))
1513, 14imbi12d 333 . . . . . . . . 9 (𝑧 = 𝐴 → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴)))
1615anbi2d 736 . . . . . . . 8 (𝑧 = 𝐴 → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴))))
1716ralsng 4165 . . . . . . 7 (𝐴 ∈ V → (∀𝑧 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴))))
1817ralbidv 2969 . . . . . 6 (𝐴 ∈ V → (∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴))))
19 simpl 472 . . . . . . . . . 10 ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝑦)
20 breq2 4587 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑥𝑅𝑦𝑥𝑅𝐴))
2119, 20syl5ib 233 . . . . . . . . 9 (𝑦 = 𝐴 → ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴))
2221biantrud 527 . . . . . . . 8 (𝑦 = 𝐴 → (¬ 𝑥𝑅𝑥 ↔ (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴))))
2322bicomd 212 . . . . . . 7 (𝑦 = 𝐴 → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴)) ↔ ¬ 𝑥𝑅𝑥))
2423ralsng 4165 . . . . . 6 (𝐴 ∈ V → (∀𝑦 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝐴) → 𝑥𝑅𝐴)) ↔ ¬ 𝑥𝑅𝑥))
2518, 24bitrd 267 . . . . 5 (𝐴 ∈ V → (∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ¬ 𝑥𝑅𝑥))
2625ralbidv 2969 . . . 4 (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥 ∈ {𝐴} ¬ 𝑥𝑅𝑥))
27 breq12 4588 . . . . . . 7 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥𝑅𝑥𝐴𝑅𝐴))
2827anidms 675 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑅𝑥𝐴𝑅𝐴))
2928notbid 307 . . . . 5 (𝑥 = 𝐴 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝐴𝑅𝐴))
3029ralsng 4165 . . . 4 (𝐴 ∈ V → (∀𝑥 ∈ {𝐴} ¬ 𝑥𝑅𝑥 ↔ ¬ 𝐴𝑅𝐴))
3126, 30bitrd 267 . . 3 (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ¬ 𝐴𝑅𝐴))
3211, 31syl5bb 271 . 2 (𝐴 ∈ V → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
3310, 32pm2.61d2 171 1 (Rel 𝑅 → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173  ∅c0 3874  {csn 4125   class class class wbr 4583   Po wpo 4957  Rel wrel 5043 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-po 4959  df-xp 5044  df-rel 5045 This theorem is referenced by:  sosn  5111
 Copyright terms: Public domain W3C validator