Step | Hyp | Ref
| Expression |
1 | | posi.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
2 | | posi.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
3 | 1, 2 | ispos 16770 |
. . 3
⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
4 | 3 | simprbi 479 |
. 2
⊢ (𝐾 ∈ Poset →
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
5 | | breq1 4586 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑥 ↔ 𝑋 ≤ 𝑥)) |
6 | | breq2 4587 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑋 ≤ 𝑥 ↔ 𝑋 ≤ 𝑋)) |
7 | 5, 6 | bitrd 267 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑥 ↔ 𝑋 ≤ 𝑋)) |
8 | | breq1 4586 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) |
9 | | breq2 4587 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑋)) |
10 | 8, 9 | anbi12d 743 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) ↔ (𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑋))) |
11 | | eqeq1 2614 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) |
12 | 10, 11 | imbi12d 333 |
. . . 4
⊢ (𝑥 = 𝑋 → (((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ↔ ((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑋) → 𝑋 = 𝑦))) |
13 | 8 | anbi1d 737 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) ↔ (𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧))) |
14 | | breq1 4586 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑧 ↔ 𝑋 ≤ 𝑧)) |
15 | 13, 14 | imbi12d 333 |
. . . 4
⊢ (𝑥 = 𝑋 → (((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧) ↔ ((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑋 ≤ 𝑧))) |
16 | 7, 12, 15 | 3anbi123d 1391 |
. . 3
⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ↔ (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑋) → 𝑋 = 𝑦) ∧ ((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑋 ≤ 𝑧)))) |
17 | | breq2 4587 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) |
18 | | breq1 4586 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋)) |
19 | 17, 18 | anbi12d 743 |
. . . . 5
⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑋) ↔ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) |
20 | | eqeq2 2621 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑌)) |
21 | 19, 20 | imbi12d 333 |
. . . 4
⊢ (𝑦 = 𝑌 → (((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑋) → 𝑋 = 𝑦) ↔ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌))) |
22 | | breq1 4586 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑧 ↔ 𝑌 ≤ 𝑧)) |
23 | 17, 22 | anbi12d 743 |
. . . . 5
⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) ↔ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧))) |
24 | 23 | imbi1d 330 |
. . . 4
⊢ (𝑦 = 𝑌 → (((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑋 ≤ 𝑧) ↔ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧) → 𝑋 ≤ 𝑧))) |
25 | 21, 24 | 3anbi23d 1394 |
. . 3
⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑋) → 𝑋 = 𝑦) ∧ ((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑋 ≤ 𝑧)) ↔ (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧) → 𝑋 ≤ 𝑧)))) |
26 | | breq2 4587 |
. . . . . 6
⊢ (𝑧 = 𝑍 → (𝑌 ≤ 𝑧 ↔ 𝑌 ≤ 𝑍)) |
27 | 26 | anbi2d 736 |
. . . . 5
⊢ (𝑧 = 𝑍 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧) ↔ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍))) |
28 | | breq2 4587 |
. . . . 5
⊢ (𝑧 = 𝑍 → (𝑋 ≤ 𝑧 ↔ 𝑋 ≤ 𝑍)) |
29 | 27, 28 | imbi12d 333 |
. . . 4
⊢ (𝑧 = 𝑍 → (((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧) → 𝑋 ≤ 𝑧) ↔ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) |
30 | 29 | 3anbi3d 1397 |
. . 3
⊢ (𝑧 = 𝑍 → ((𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧) → 𝑋 ≤ 𝑧)) ↔ (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)))) |
31 | 16, 25, 30 | rspc3v 3296 |
. 2
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)))) |
32 | 4, 31 | mpan9 485 |
1
⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) |