MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posi Structured version   Visualization version   GIF version

Theorem posi 16773
Description: Lemma for poset properties. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
posi.b 𝐵 = (Base‘𝐾)
posi.l = (le‘𝐾)
Assertion
Ref Expression
posi ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))

Proof of Theorem posi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posi.b . . . 4 𝐵 = (Base‘𝐾)
2 posi.l . . . 4 = (le‘𝐾)
31, 2ispos 16770 . . 3 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
43simprbi 479 . 2 (𝐾 ∈ Poset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
5 breq1 4586 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑥𝑋 𝑥))
6 breq2 4587 . . . . 5 (𝑥 = 𝑋 → (𝑋 𝑥𝑋 𝑋))
75, 6bitrd 267 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑥𝑋 𝑋))
8 breq1 4586 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
9 breq2 4587 . . . . . 6 (𝑥 = 𝑋 → (𝑦 𝑥𝑦 𝑋))
108, 9anbi12d 743 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 𝑥) ↔ (𝑋 𝑦𝑦 𝑋)))
11 eqeq1 2614 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
1210, 11imbi12d 333 . . . 4 (𝑥 = 𝑋 → (((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ↔ ((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦)))
138anbi1d 737 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 𝑧) ↔ (𝑋 𝑦𝑦 𝑧)))
14 breq1 4586 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑧𝑋 𝑧))
1513, 14imbi12d 333 . . . 4 (𝑥 = 𝑋 → (((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧) ↔ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧)))
167, 12, 153anbi123d 1391 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦) ∧ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧))))
17 breq2 4587 . . . . . 6 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
18 breq1 4586 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑋𝑌 𝑋))
1917, 18anbi12d 743 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 𝑋) ↔ (𝑋 𝑌𝑌 𝑋)))
20 eqeq2 2621 . . . . 5 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
2119, 20imbi12d 333 . . . 4 (𝑦 = 𝑌 → (((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦) ↔ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌)))
22 breq1 4586 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
2317, 22anbi12d 743 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 𝑧) ↔ (𝑋 𝑌𝑌 𝑧)))
2423imbi1d 330 . . . 4 (𝑦 = 𝑌 → (((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧) ↔ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧)))
2521, 243anbi23d 1394 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑋 ∧ ((𝑋 𝑦𝑦 𝑋) → 𝑋 = 𝑦) ∧ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧))))
26 breq2 4587 . . . . . 6 (𝑧 = 𝑍 → (𝑌 𝑧𝑌 𝑍))
2726anbi2d 736 . . . . 5 (𝑧 = 𝑍 → ((𝑋 𝑌𝑌 𝑧) ↔ (𝑋 𝑌𝑌 𝑍)))
28 breq2 4587 . . . . 5 (𝑧 = 𝑍 → (𝑋 𝑧𝑋 𝑍))
2927, 28imbi12d 333 . . . 4 (𝑧 = 𝑍 → (((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧) ↔ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
30293anbi3d 1397 . . 3 (𝑧 = 𝑍 → ((𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))))
3116, 25, 30rspc3v 3296 . 2 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))))
324, 31mpan9 485 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173   class class class wbr 4583  cfv 5804  Basecbs 15695  lecple 15775  Posetcpo 16763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-poset 16769
This theorem is referenced by:  posasymb  16775  postr  16776
  Copyright terms: Public domain W3C validator