MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poirr2 Structured version   Visualization version   GIF version

Theorem poirr2 5439
Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.)
Assertion
Ref Expression
poirr2 (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)

Proof of Theorem poirr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5346 . . . 4 Rel ( I ↾ 𝐴)
2 relin2 5160 . . . 4 (Rel ( I ↾ 𝐴) → Rel (𝑅 ∩ ( I ↾ 𝐴)))
31, 2mp1i 13 . . 3 (𝑅 Po 𝐴 → Rel (𝑅 ∩ ( I ↾ 𝐴)))
4 df-br 4584 . . . . 5 (𝑥(𝑅 ∩ ( I ↾ 𝐴))𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ( I ↾ 𝐴)))
5 brin 4634 . . . . 5 (𝑥(𝑅 ∩ ( I ↾ 𝐴))𝑦 ↔ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
64, 5bitr3i 265 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ( I ↾ 𝐴)) ↔ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
7 vex 3176 . . . . . . . . 9 𝑦 ∈ V
87brres 5323 . . . . . . . 8 (𝑥( I ↾ 𝐴)𝑦 ↔ (𝑥 I 𝑦𝑥𝐴))
9 poirr 4970 . . . . . . . . . . 11 ((𝑅 Po 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
107ideq 5196 . . . . . . . . . . . . 13 (𝑥 I 𝑦𝑥 = 𝑦)
11 breq2 4587 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝑅𝑥𝑥𝑅𝑦))
1210, 11sylbi 206 . . . . . . . . . . . 12 (𝑥 I 𝑦 → (𝑥𝑅𝑥𝑥𝑅𝑦))
1312notbid 307 . . . . . . . . . . 11 (𝑥 I 𝑦 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦))
149, 13syl5ibcom 234 . . . . . . . . . 10 ((𝑅 Po 𝐴𝑥𝐴) → (𝑥 I 𝑦 → ¬ 𝑥𝑅𝑦))
1514expimpd 627 . . . . . . . . 9 (𝑅 Po 𝐴 → ((𝑥𝐴𝑥 I 𝑦) → ¬ 𝑥𝑅𝑦))
1615ancomsd 469 . . . . . . . 8 (𝑅 Po 𝐴 → ((𝑥 I 𝑦𝑥𝐴) → ¬ 𝑥𝑅𝑦))
178, 16syl5bi 231 . . . . . . 7 (𝑅 Po 𝐴 → (𝑥( I ↾ 𝐴)𝑦 → ¬ 𝑥𝑅𝑦))
1817con2d 128 . . . . . 6 (𝑅 Po 𝐴 → (𝑥𝑅𝑦 → ¬ 𝑥( I ↾ 𝐴)𝑦))
19 imnan 437 . . . . . 6 ((𝑥𝑅𝑦 → ¬ 𝑥( I ↾ 𝐴)𝑦) ↔ ¬ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
2018, 19sylib 207 . . . . 5 (𝑅 Po 𝐴 → ¬ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
2120pm2.21d 117 . . . 4 (𝑅 Po 𝐴 → ((𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦) → ⟨𝑥, 𝑦⟩ ∈ ∅))
226, 21syl5bi 231 . . 3 (𝑅 Po 𝐴 → (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ( I ↾ 𝐴)) → ⟨𝑥, 𝑦⟩ ∈ ∅))
233, 22relssdv 5135 . 2 (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) ⊆ ∅)
24 ss0 3926 . 2 ((𝑅 ∩ ( I ↾ 𝐴)) ⊆ ∅ → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)
2523, 24syl 17 1 (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  cin 3539  wss 3540  c0 3874  cop 4131   class class class wbr 4583   I cid 4948   Po wpo 4957  cres 5040  Rel wrel 5043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-po 4959  df-xp 5044  df-rel 5045  df-res 5050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator