MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pocl Structured version   Visualization version   GIF version

Theorem pocl 4966
Description: Properties of partial order relation in class notation. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
pocl (𝑅 Po 𝐴 → ((𝐵𝐴𝐶𝐴𝐷𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))))

Proof of Theorem pocl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . 7 (𝑥 = 𝐵𝑥 = 𝐵)
21, 1breq12d 4596 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝑅𝑥𝐵𝑅𝐵))
32notbid 307 . . . . 5 (𝑥 = 𝐵 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝐵𝑅𝐵))
4 breq1 4586 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝑅𝑦𝐵𝑅𝑦))
54anbi1d 737 . . . . . 6 (𝑥 = 𝐵 → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝐵𝑅𝑦𝑦𝑅𝑧)))
6 breq1 4586 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝑅𝑧𝐵𝑅𝑧))
75, 6imbi12d 333 . . . . 5 (𝑥 = 𝐵 → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝐵𝑅𝑦𝑦𝑅𝑧) → 𝐵𝑅𝑧)))
83, 7anbi12d 743 . . . 4 (𝑥 = 𝐵 → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦𝑦𝑅𝑧) → 𝐵𝑅𝑧))))
98imbi2d 329 . . 3 (𝑥 = 𝐵 → ((𝑅 Po 𝐴 → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))) ↔ (𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦𝑦𝑅𝑧) → 𝐵𝑅𝑧)))))
10 breq2 4587 . . . . . . 7 (𝑦 = 𝐶 → (𝐵𝑅𝑦𝐵𝑅𝐶))
11 breq1 4586 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑅𝑧𝐶𝑅𝑧))
1210, 11anbi12d 743 . . . . . 6 (𝑦 = 𝐶 → ((𝐵𝑅𝑦𝑦𝑅𝑧) ↔ (𝐵𝑅𝐶𝐶𝑅𝑧)))
1312imbi1d 330 . . . . 5 (𝑦 = 𝐶 → (((𝐵𝑅𝑦𝑦𝑅𝑧) → 𝐵𝑅𝑧) ↔ ((𝐵𝑅𝐶𝐶𝑅𝑧) → 𝐵𝑅𝑧)))
1413anbi2d 736 . . . 4 (𝑦 = 𝐶 → ((¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦𝑦𝑅𝑧) → 𝐵𝑅𝑧)) ↔ (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝑧) → 𝐵𝑅𝑧))))
1514imbi2d 329 . . 3 (𝑦 = 𝐶 → ((𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦𝑦𝑅𝑧) → 𝐵𝑅𝑧))) ↔ (𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝑧) → 𝐵𝑅𝑧)))))
16 breq2 4587 . . . . . . 7 (𝑧 = 𝐷 → (𝐶𝑅𝑧𝐶𝑅𝐷))
1716anbi2d 736 . . . . . 6 (𝑧 = 𝐷 → ((𝐵𝑅𝐶𝐶𝑅𝑧) ↔ (𝐵𝑅𝐶𝐶𝑅𝐷)))
18 breq2 4587 . . . . . 6 (𝑧 = 𝐷 → (𝐵𝑅𝑧𝐵𝑅𝐷))
1917, 18imbi12d 333 . . . . 5 (𝑧 = 𝐷 → (((𝐵𝑅𝐶𝐶𝑅𝑧) → 𝐵𝑅𝑧) ↔ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷)))
2019anbi2d 736 . . . 4 (𝑧 = 𝐷 → ((¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝑧) → 𝐵𝑅𝑧)) ↔ (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))))
2120imbi2d 329 . . 3 (𝑧 = 𝐷 → ((𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝑧) → 𝐵𝑅𝑧))) ↔ (𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷)))))
22 df-po 4959 . . . . . . 7 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
23 r3al 2924 . . . . . . 7 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
2422, 23sylbb 208 . . . . . 6 (𝑅 Po 𝐴 → ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
252419.21bbi 2048 . . . . 5 (𝑅 Po 𝐴 → ∀𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
262519.21bi 2047 . . . 4 (𝑅 Po 𝐴 → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
2726com12 32 . . 3 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑅 Po 𝐴 → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
289, 15, 21, 27vtocl3ga 3249 . 2 ((𝐵𝐴𝐶𝐴𝐷𝐴) → (𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))))
2928com12 32 1 (𝑅 Po 𝐴 → ((𝐵𝐴𝐶𝐴𝐷𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583   Po wpo 4957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-po 4959
This theorem is referenced by:  poirr  4970  potr  4971
  Copyright terms: Public domain W3C validator