Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemn Structured version   Visualization version   GIF version

Theorem pntlemn 25089
 Description: Lemma for pnt 25103. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
Assertion
Ref Expression
pntlemn ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽)))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐽   𝑧,𝐿   𝑧,𝐾   𝑧,𝑀   𝑧,𝑁   𝑧,𝑅   𝑧,𝑈   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌   𝑧,𝑎,𝐸   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑧,𝑎)   𝐴(𝑧,𝑎)   𝐵(𝑧,𝑎)   𝐶(𝑎)   𝐷(𝑧,𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑧,𝑎)   𝐽(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemn
StepHypRef Expression
1 pntlem1.u . . . . . 6 (𝜑𝑈 ∈ ℝ+)
21adantr 480 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑈 ∈ ℝ+)
32rpred 11748 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑈 ∈ ℝ)
4 simprl 790 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℕ)
53, 4nndivred 10946 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑈 / 𝐽) ∈ ℝ)
6 pntlem1.r . . . . . . . . . . 11 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
7 pntlem1.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ+)
8 pntlem1.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ+)
9 pntlem1.l . . . . . . . . . . 11 (𝜑𝐿 ∈ (0(,)1))
10 pntlem1.d . . . . . . . . . . 11 𝐷 = (𝐴 + 1)
11 pntlem1.f . . . . . . . . . . 11 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
12 pntlem1.u2 . . . . . . . . . . 11 (𝜑𝑈𝐴)
13 pntlem1.e . . . . . . . . . . 11 𝐸 = (𝑈 / 𝐷)
14 pntlem1.k . . . . . . . . . . 11 𝐾 = (exp‘(𝐵 / 𝐸))
15 pntlem1.y . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
16 pntlem1.x . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
17 pntlem1.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ+)
18 pntlem1.w . . . . . . . . . . 11 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
19 pntlem1.z . . . . . . . . . . 11 (𝜑𝑍 ∈ (𝑊[,)+∞))
206, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19pntlemb 25086 . . . . . . . . . 10 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2120simp1d 1066 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ+)
2221adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑍 ∈ ℝ+)
234nnrpd 11746 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℝ+)
2422, 23rpdivcld 11765 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 / 𝐽) ∈ ℝ+)
256pntrf 25052 . . . . . . . 8 𝑅:ℝ+⟶ℝ
2625ffvelrni 6266 . . . . . . 7 ((𝑍 / 𝐽) ∈ ℝ+ → (𝑅‘(𝑍 / 𝐽)) ∈ ℝ)
2724, 26syl 17 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑅‘(𝑍 / 𝐽)) ∈ ℝ)
2827, 22rerpdivcld 11779 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / 𝑍) ∈ ℝ)
2928recnd 9947 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / 𝑍) ∈ ℂ)
3029abscld 14023 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ∈ ℝ)
315, 30resubcld 10337 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) ∈ ℝ)
3223relogcld 24173 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (log‘𝐽) ∈ ℝ)
3327recnd 9947 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑅‘(𝑍 / 𝐽)) ∈ ℂ)
3422rpcnne0d 11757 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
3523rpcnne0d 11757 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝐽 ∈ ℂ ∧ 𝐽 ≠ 0))
36 divdiv2 10616 . . . . . . . . 9 (((𝑅‘(𝑍 / 𝐽)) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) ∧ (𝐽 ∈ ℂ ∧ 𝐽 ≠ 0)) → ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)) = (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍))
3733, 34, 35, 36syl3anc 1318 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)) = (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍))
384nncnd 10913 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℂ)
39 div23 10583 . . . . . . . . 9 (((𝑅‘(𝑍 / 𝐽)) ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍) = (((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽))
4033, 38, 34, 39syl3anc 1318 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍) = (((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽))
4137, 40eqtrd 2644 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)) = (((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽))
4241fveq2d 6107 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) = (abs‘(((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽)))
4329, 38absmuld 14041 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘(((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽)) = ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · (abs‘𝐽)))
4423rprege0d 11755 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝐽 ∈ ℝ ∧ 0 ≤ 𝐽))
45 absid 13884 . . . . . . . 8 ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽) → (abs‘𝐽) = 𝐽)
4644, 45syl 17 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘𝐽) = 𝐽)
4746oveq2d 6565 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · (abs‘𝐽)) = ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽))
4842, 43, 473eqtrd 2648 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) = ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽))
4924rpred 11748 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 / 𝐽) ∈ ℝ)
50 simprr 792 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ≤ (𝑍 / 𝑌))
5123rpred 11748 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℝ)
5222rpred 11748 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑍 ∈ ℝ)
5315simpld 474 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ+)
5453adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑌 ∈ ℝ+)
5551, 52, 54lemuldiv2d 11798 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑌 · 𝐽) ≤ 𝑍𝐽 ≤ (𝑍 / 𝑌)))
5650, 55mpbird 246 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑌 · 𝐽) ≤ 𝑍)
5754rpred 11748 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑌 ∈ ℝ)
5857, 52, 23lemuldivd 11797 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑌 · 𝐽) ≤ 𝑍𝑌 ≤ (𝑍 / 𝐽)))
5956, 58mpbid 221 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑌 ≤ (𝑍 / 𝐽))
60 elicopnf 12140 . . . . . . . 8 (𝑌 ∈ ℝ → ((𝑍 / 𝐽) ∈ (𝑌[,)+∞) ↔ ((𝑍 / 𝐽) ∈ ℝ ∧ 𝑌 ≤ (𝑍 / 𝐽))))
6157, 60syl 17 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑍 / 𝐽) ∈ (𝑌[,)+∞) ↔ ((𝑍 / 𝐽) ∈ ℝ ∧ 𝑌 ≤ (𝑍 / 𝐽))))
6249, 59, 61mpbir2and 959 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 / 𝐽) ∈ (𝑌[,)+∞))
63 pntlem1.U . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6463adantr 480 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
65 fveq2 6103 . . . . . . . . . 10 (𝑧 = (𝑍 / 𝐽) → (𝑅𝑧) = (𝑅‘(𝑍 / 𝐽)))
66 id 22 . . . . . . . . . 10 (𝑧 = (𝑍 / 𝐽) → 𝑧 = (𝑍 / 𝐽))
6765, 66oveq12d 6567 . . . . . . . . 9 (𝑧 = (𝑍 / 𝐽) → ((𝑅𝑧) / 𝑧) = ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)))
6867fveq2d 6107 . . . . . . . 8 (𝑧 = (𝑍 / 𝐽) → (abs‘((𝑅𝑧) / 𝑧)) = (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))))
6968breq1d 4593 . . . . . . 7 (𝑧 = (𝑍 / 𝐽) → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈 ↔ (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) ≤ 𝑈))
7069rspcv 3278 . . . . . 6 ((𝑍 / 𝐽) ∈ (𝑌[,)+∞) → (∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈 → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) ≤ 𝑈))
7162, 64, 70sylc 63 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) ≤ 𝑈)
7248, 71eqbrtrrd 4607 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽) ≤ 𝑈)
7330, 3, 23lemuldivd 11797 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽) ≤ 𝑈 ↔ (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ≤ (𝑈 / 𝐽)))
7472, 73mpbid 221 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ≤ (𝑈 / 𝐽))
755, 30subge0d 10496 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (0 ≤ ((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) ↔ (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ≤ (𝑈 / 𝐽)))
7674, 75mpbird 246 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ ((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))))
77 log1 24136 . . 3 (log‘1) = 0
78 nnge1 10923 . . . . 5 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
7978ad2antrl 760 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 1 ≤ 𝐽)
80 1rp 11712 . . . . 5 1 ∈ ℝ+
81 logleb 24153 . . . . 5 ((1 ∈ ℝ+𝐽 ∈ ℝ+) → (1 ≤ 𝐽 ↔ (log‘1) ≤ (log‘𝐽)))
8280, 23, 81sylancr 694 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (1 ≤ 𝐽 ↔ (log‘1) ≤ (log‘𝐽)))
8379, 82mpbid 221 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (log‘1) ≤ (log‘𝐽))
8477, 83syl5eqbrr 4619 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (log‘𝐽))
8531, 32, 76, 84mulge0d 10483 1 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950   < clt 9953   ≤ cle 9954   − cmin 10145   / cdiv 10563  ℕcn 10897  2c2 10947  3c3 10948  4c4 10949  ;cdc 11369  ℝ+crp 11708  (,)cioo 12046  [,)cico 12048  ⌊cfl 12453  ↑cexp 12722  √csqrt 13821  abscabs 13822  expce 14631  eceu 14632  logclog 24105  ψcchp 24619 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-vma 24624  df-chp 24625 This theorem is referenced by:  pntlemj  25092  pntlemf  25094
 Copyright terms: Public domain W3C validator