MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemi Structured version   Visualization version   GIF version

Theorem pntlemi 25093
Description: Lemma for pnt 25103. Eliminate some assumptions from pntlemj 25092. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
Assertion
Ref Expression
pntlemi ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝐽   𝑢,𝑛,𝐿,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑂,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . 8 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . 8 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . 8 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . . 8 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . . 8 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . . 8 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . . 8 𝐾 = (exp‘(𝐵 / 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 25084 . . . . . . 7 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1211simp2d 1067 . . . . . 6 (𝜑𝐾 ∈ ℝ+)
13 elfzoelz 12339 . . . . . 6 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
14 rpexpcl 12741 . . . . . 6 ((𝐾 ∈ ℝ+𝐽 ∈ ℤ) → (𝐾𝐽) ∈ ℝ+)
1512, 13, 14syl2an 493 . . . . 5 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝐾𝐽) ∈ ℝ+)
1615rpred 11748 . . . 4 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝐾𝐽) ∈ ℝ)
17 elfzofz 12354 . . . . . 6 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (𝑀...𝑁))
18 pntlem1.y . . . . . . 7 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
19 pntlem1.x . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
20 pntlem1.c . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
21 pntlem1.w . . . . . . 7 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
22 pntlem1.z . . . . . . 7 (𝜑𝑍 ∈ (𝑊[,)+∞))
23 pntlem1.m . . . . . . 7 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
24 pntlem1.n . . . . . . 7 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 19, 20, 21, 22, 23, 24pntlemh 25088 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
2617, 25sylan2 490 . . . . 5 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
2726simpld 474 . . . 4 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → 𝑋 < (𝐾𝐽))
2819simpld 474 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
2928adantr 480 . . . . 5 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ+)
30 rpxr 11716 . . . . 5 (𝑋 ∈ ℝ+𝑋 ∈ ℝ*)
31 elioopnf 12138 . . . . 5 (𝑋 ∈ ℝ* → ((𝐾𝐽) ∈ (𝑋(,)+∞) ↔ ((𝐾𝐽) ∈ ℝ ∧ 𝑋 < (𝐾𝐽))))
3229, 30, 313syl 18 . . . 4 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝐾𝐽) ∈ (𝑋(,)+∞) ↔ ((𝐾𝐽) ∈ ℝ ∧ 𝑋 < (𝐾𝐽))))
3316, 27, 32mpbir2and 959 . . 3 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝐾𝐽) ∈ (𝑋(,)+∞))
34 pntlem1.K . . . 4 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
3534adantr 480 . . 3 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
36 breq2 4587 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦 < 𝑧𝑦 < 𝑥))
37 oveq2 6557 . . . . . . . . 9 (𝑧 = 𝑥 → ((1 + (𝐿 · 𝐸)) · 𝑧) = ((1 + (𝐿 · 𝐸)) · 𝑥))
3837breq1d 4593 . . . . . . . 8 (𝑧 = 𝑥 → (((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)))
3936, 38anbi12d 743 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ↔ (𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦))))
40 id 22 . . . . . . . . 9 (𝑧 = 𝑥𝑧 = 𝑥)
4140, 37oveq12d 6567 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧)) = (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥)))
4241raleqdv 3121 . . . . . . 7 (𝑧 = 𝑥 → (∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸 ↔ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
4339, 42anbi12d 743 . . . . . 6 (𝑧 = 𝑥 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
4443cbvrexv 3148 . . . . 5 (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑥 ∈ ℝ+ ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
45 breq1 4586 . . . . . . . 8 (𝑦 = (𝐾𝐽) → (𝑦 < 𝑥 ↔ (𝐾𝐽) < 𝑥))
46 oveq2 6557 . . . . . . . . 9 (𝑦 = (𝐾𝐽) → (𝐾 · 𝑦) = (𝐾 · (𝐾𝐽)))
4746breq2d 4595 . . . . . . . 8 (𝑦 = (𝐾𝐽) → (((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))))
4845, 47anbi12d 743 . . . . . . 7 (𝑦 = (𝐾𝐽) → ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ↔ ((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽)))))
4948anbi1d 737 . . . . . 6 (𝑦 = (𝐾𝐽) → (((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
5049rexbidv 3034 . . . . 5 (𝑦 = (𝐾𝐽) → (∃𝑥 ∈ ℝ+ ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
5144, 50syl5bb 271 . . . 4 (𝑦 = (𝐾𝐽) → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
5251rspcv 3278 . . 3 ((𝐾𝐽) ∈ (𝑋(,)+∞) → (∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) → ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
5333, 35, 52sylc 63 . 2 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
542ad2antrr 758 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐴 ∈ ℝ+)
553ad2antrr 758 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐵 ∈ ℝ+)
564ad2antrr 758 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐿 ∈ (0(,)1))
577ad2antrr 758 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑈 ∈ ℝ+)
588ad2antrr 758 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑈𝐴)
5918ad2antrr 758 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
6019ad2antrr 758 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → (𝑋 ∈ ℝ+𝑌 < 𝑋))
6120ad2antrr 758 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐶 ∈ ℝ+)
6222ad2antrr 758 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑍 ∈ (𝑊[,)+∞))
63 pntlem1.U . . . 4 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6463ad2antrr 758 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6534ad2antrr 758 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
66 pntlem1.o . . 3 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
67 simprl 790 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑥 ∈ ℝ+)
68 simprr 792 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
69 simplr 788 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐽 ∈ (𝑀..^𝑁))
70 eqid 2610 . . 3 (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑥))) + 1)...(⌊‘(𝑍 / 𝑥))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑥))) + 1)...(⌊‘(𝑍 / 𝑥)))
711, 54, 55, 56, 5, 6, 57, 58, 9, 10, 59, 60, 61, 21, 62, 23, 24, 64, 65, 66, 67, 68, 69, 70pntlemj 25092 . 2 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
7253, 71rexlimddv 3017 1 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  3c3 10948  4c4 10949  8c8 10953  cz 11254  cdc 11369  +crp 11708  (,)cioo 12046  [,)cico 12048  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  cfl 12453  cexp 12722  csqrt 13821  abscabs 13822  Σcsu 14264  expce 14631  logclog 24105  ψcchp 24619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-vma 24624  df-chp 24625
This theorem is referenced by:  pntlemf  25094
  Copyright terms: Public domain W3C validator