Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmod2iN Structured version   Visualization version   GIF version

Theorem pmod2iN 34153
Description: Dual of the modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmod.a 𝐴 = (Atoms‘𝐾)
pmod.s 𝑆 = (PSubSp‘𝐾)
pmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmod2iN ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑍𝑋 → ((𝑋𝑌) + 𝑍) = (𝑋 ∩ (𝑌 + 𝑍))))

Proof of Theorem pmod2iN
StepHypRef Expression
1 incom 3767 . . . . . 6 (𝑋𝑌) = (𝑌𝑋)
21oveq1i 6559 . . . . 5 ((𝑋𝑌) + 𝑍) = ((𝑌𝑋) + 𝑍)
3 hllat 33668 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
433ad2ant1 1075 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → 𝐾 ∈ Lat)
5 simp22 1088 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → 𝑌𝐴)
6 ssinss1 3803 . . . . . . 7 (𝑌𝐴 → (𝑌𝑋) ⊆ 𝐴)
75, 6syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → (𝑌𝑋) ⊆ 𝐴)
8 simp23 1089 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → 𝑍𝐴)
9 pmod.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
10 pmod.p . . . . . . 7 + = (+𝑃𝐾)
119, 10paddcom 34117 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑌𝑋) ⊆ 𝐴𝑍𝐴) → ((𝑌𝑋) + 𝑍) = (𝑍 + (𝑌𝑋)))
124, 7, 8, 11syl3anc 1318 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑌𝑋) + 𝑍) = (𝑍 + (𝑌𝑋)))
132, 12syl5eq 2656 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑋𝑌) + 𝑍) = (𝑍 + (𝑌𝑋)))
14 simp21 1087 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → 𝑋𝑆)
158, 5, 143jca 1235 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → (𝑍𝐴𝑌𝐴𝑋𝑆))
16 pmod.s . . . . . . 7 𝑆 = (PSubSp‘𝐾)
179, 16, 10pmod1i 34152 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑍𝐴𝑌𝐴𝑋𝑆)) → (𝑍𝑋 → ((𝑍 + 𝑌) ∩ 𝑋) = (𝑍 + (𝑌𝑋))))
18173impia 1253 . . . . 5 ((𝐾 ∈ HL ∧ (𝑍𝐴𝑌𝐴𝑋𝑆) ∧ 𝑍𝑋) → ((𝑍 + 𝑌) ∩ 𝑋) = (𝑍 + (𝑌𝑋)))
1915, 18syld3an2 1365 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑍 + 𝑌) ∩ 𝑋) = (𝑍 + (𝑌𝑋)))
209, 10paddcom 34117 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑍𝐴𝑌𝐴) → (𝑍 + 𝑌) = (𝑌 + 𝑍))
214, 8, 5, 20syl3anc 1318 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → (𝑍 + 𝑌) = (𝑌 + 𝑍))
2221ineq1d 3775 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑍 + 𝑌) ∩ 𝑋) = ((𝑌 + 𝑍) ∩ 𝑋))
2313, 19, 223eqtr2d 2650 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑋𝑌) + 𝑍) = ((𝑌 + 𝑍) ∩ 𝑋))
24 incom 3767 . . 3 ((𝑌 + 𝑍) ∩ 𝑋) = (𝑋 ∩ (𝑌 + 𝑍))
2523, 24syl6eq 2660 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴) ∧ 𝑍𝑋) → ((𝑋𝑌) + 𝑍) = (𝑋 ∩ (𝑌 + 𝑍)))
26253expia 1259 1 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑍𝑋 → ((𝑋𝑌) + 𝑍) = (𝑋 ∩ (𝑌 + 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cin 3539  wss 3540  cfv 5804  (class class class)co 6549  Latclat 16868  Atomscatm 33568  HLchlt 33655  PSubSpcpsubsp 33800  +𝑃cpadd 34099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-psubsp 33807  df-padd 34100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator