MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpwfi Structured version   Visualization version   GIF version

Theorem pmatcollpwfi 20406
Description: Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
pmatcollpwfi ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐵,𝑠,𝑛   𝐶,𝑛   𝑀,𝑠   𝑁,𝑠   𝑅,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝑃(𝑠)   𝑇(𝑛,𝑠)   (𝑠)   (𝑛,𝑠)   𝑋(𝑠)

Proof of Theorem pmatcollpwfi
StepHypRef Expression
1 crngring 18381 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
213ad2ant2 1076 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
3 simp3 1056 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
4 pmatcollpw.p . . . 4 𝑃 = (Poly1𝑅)
5 pmatcollpw.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
6 pmatcollpw.b . . . 4 𝐵 = (Base‘𝐶)
7 eqid 2610 . . . 4 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
8 eqid 2610 . . . 4 (0g‘(𝑁 Mat 𝑅)) = (0g‘(𝑁 Mat 𝑅))
94, 5, 6, 7, 8decpmataa0 20392 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))))
102, 3, 9syl2anc 691 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))))
11 pmatcollpw.m . . . . . . 7 = ( ·𝑠𝐶)
12 pmatcollpw.e . . . . . . 7 = (.g‘(mulGrp‘𝑃))
13 pmatcollpw.x . . . . . . 7 𝑋 = (var1𝑅)
14 pmatcollpw.t . . . . . . 7 𝑇 = (𝑁 matToPolyMat 𝑅)
154, 5, 6, 11, 12, 13, 14pmatcollpw 20405 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
1615ad2antrr 758 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
17 nfv 1830 . . . . . . 7 𝑛((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0)
18 nfra1 2925 . . . . . . 7 𝑛𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))
1917, 18nfan 1816 . . . . . 6 𝑛(((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))))
20 eqid 2610 . . . . . 6 (0g𝐶) = (0g𝐶)
21 simp1 1054 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
224, 5pmatring 20317 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
2321, 2, 22syl2anc 691 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐶 ∈ Ring)
24 ringcmn 18404 . . . . . . . 8 (𝐶 ∈ Ring → 𝐶 ∈ CMnd)
2523, 24syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐶 ∈ CMnd)
2625ad2antrr 758 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → 𝐶 ∈ CMnd)
2721adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
282adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
294ply1ring 19439 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
3028, 29syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ Ring)
312anim1i 590 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0))
32 eqid 2610 . . . . . . . . . . 11 (mulGrp‘𝑃) = (mulGrp‘𝑃)
33 eqid 2610 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
344, 13, 32, 12, 33ply1moncl 19462 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
3531, 34syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
36 simpl2 1058 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ CRing)
373adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑀𝐵)
38 simpr 476 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
39 eqid 2610 . . . . . . . . . . . 12 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
404, 5, 6, 7, 39decpmatcl 20391 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑀𝐵𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
4136, 37, 38, 40syl3anc 1318 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
4214, 7, 39, 4, 5, 6mat2pmatbas0 20351 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑀 decompPMat 𝑛)) ∈ 𝐵)
4327, 28, 41, 42syl3anc 1318 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑀 decompPMat 𝑛)) ∈ 𝐵)
4433, 5, 6, 11matvscl 20056 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑛 𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘(𝑀 decompPMat 𝑛)) ∈ 𝐵)) → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵)
4527, 30, 35, 43, 44syl22anc 1319 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵)
4645ralrimiva 2949 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑛 ∈ ℕ0 ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵)
4746ad2antrr 758 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → ∀𝑛 ∈ ℕ0 ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) ∈ 𝐵)
48 simpr 476 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → 𝑠 ∈ ℕ0)
4948adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → 𝑠 ∈ ℕ0)
50 fveq2 6103 . . . . . . . . . . . . 13 ((𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)) → (𝑇‘(𝑀 decompPMat 𝑛)) = (𝑇‘(0g‘(𝑁 Mat 𝑅))))
512, 21jca 553 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
5251ad2antrr 758 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
53 eqid 2610 . . . . . . . . . . . . . . 15 (0g‘(𝑁 Mat 𝑃)) = (0g‘(𝑁 Mat 𝑃))
5414, 4, 8, 530mat2pmat 20360 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑇‘(0g‘(𝑁 Mat 𝑅))) = (0g‘(𝑁 Mat 𝑃)))
5552, 54syl 17 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(0g‘(𝑁 Mat 𝑅))) = (0g‘(𝑁 Mat 𝑃)))
5650, 55sylan9eqr 2666 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑀 decompPMat 𝑛)) = (0g‘(𝑁 Mat 𝑃)))
5756oveq2d 6565 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) = ((𝑛 𝑋) (0g‘(𝑁 Mat 𝑃))))
584, 5pmatlmod 20318 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ LMod)
5921, 2, 58syl2anc 691 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐶 ∈ LMod)
6059ad2antrr 758 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ LMod)
6131adantlr 747 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0))
6261, 34syl 17 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
634ply1crng 19389 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
6463anim2i 591 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
65643adant3 1074 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
665matsca2 20045 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝐶))
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝐶))
6867eqcomd 2616 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝐶) = 𝑃)
6968ad2antrr 758 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (Scalar‘𝐶) = 𝑃)
7069fveq2d 6107 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (Base‘(Scalar‘𝐶)) = (Base‘𝑃))
7162, 70eleqtrrd 2691 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)))
725eqcomi 2619 . . . . . . . . . . . . . . . 16 (𝑁 Mat 𝑃) = 𝐶
7372fveq2i 6106 . . . . . . . . . . . . . . 15 (0g‘(𝑁 Mat 𝑃)) = (0g𝐶)
7473oveq2i 6560 . . . . . . . . . . . . . 14 ((𝑛 𝑋) (0g‘(𝑁 Mat 𝑃))) = ((𝑛 𝑋) (0g𝐶))
75 eqid 2610 . . . . . . . . . . . . . . 15 (Scalar‘𝐶) = (Scalar‘𝐶)
76 eqid 2610 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
7775, 11, 76, 20lmodvs0 18720 . . . . . . . . . . . . . 14 ((𝐶 ∈ LMod ∧ (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶))) → ((𝑛 𝑋) (0g𝐶)) = (0g𝐶))
7874, 77syl5eq 2656 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶))) → ((𝑛 𝑋) (0g‘(𝑁 Mat 𝑃))) = (0g𝐶))
7960, 71, 78syl2anc 691 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑋) (0g‘(𝑁 Mat 𝑃))) = (0g𝐶))
8079adantr 480 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → ((𝑛 𝑋) (0g‘(𝑁 Mat 𝑃))) = (0g𝐶))
8157, 80eqtrd 2644 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) = (0g𝐶))
8281ex 449 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)) → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) = (0g𝐶)))
8382imim2d 55 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → (𝑠 < 𝑛 → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) = (0g𝐶))))
8483ralimdva 2945 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) = (0g𝐶))))
8584imp 444 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))) = (0g𝐶)))
8619, 6, 20, 26, 47, 49, 85gsummptnn0fz 18205 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
8716, 86eqtrd 2644 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅)))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
8887ex 449 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))))))
8988reximdva 3000 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑀 decompPMat 𝑛) = (0g‘(𝑁 Mat 𝑅))) → ∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))))))
9010, 89mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815   < clt 9953  0cn0 11169  ...cfz 12197  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923   Σg cgsu 15924  .gcmg 17363  CMndccmn 18016  mulGrpcmgp 18312  Ringcrg 18370  CRingccrg 18371  LModclmod 18686  var1cv1 19367  Poly1cpl1 19368   Mat cmat 20032   matToPolyMat cmat2pmat 20328   decompPMat cdecpmat 20386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-srg 18329  df-ring 18372  df-cring 18373  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-assa 19133  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-dsmm 19895  df-frlm 19910  df-mamu 20009  df-mat 20033  df-mat2pmat 20331  df-decpmat 20387
This theorem is referenced by:  pmatcollpw3fi  20409
  Copyright terms: Public domain W3C validator