Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapocjN Structured version   Visualization version   GIF version

Theorem pmapocjN 34234
 Description: The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapocj.b 𝐵 = (Base‘𝐾)
pmapocj.j = (join‘𝐾)
pmapocj.m = (meet‘𝐾)
pmapocj.o = (oc‘𝐾)
pmapocj.f 𝐹 = (pmap‘𝐾)
pmapocj.p + = (+𝑃𝐾)
pmapocj.r 𝑁 = (⊥𝑃𝐾)
Assertion
Ref Expression
pmapocjN ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘( ‘(𝑋 𝑌))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))

Proof of Theorem pmapocjN
StepHypRef Expression
1 pmapocj.b . . . 4 𝐵 = (Base‘𝐾)
2 pmapocj.j . . . 4 = (join‘𝐾)
3 pmapocj.f . . . 4 𝐹 = (pmap‘𝐾)
4 pmapocj.p . . . 4 + = (+𝑃𝐾)
5 pmapocj.r . . . 4 𝑁 = (⊥𝑃𝐾)
61, 2, 3, 4, 5pmapj2N 34233 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 𝑌)) = (𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌)))))
76fveq2d 6107 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝐹‘(𝑋 𝑌))) = (𝑁‘(𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌))))))
8 simp1 1054 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
9 hllat 33668 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
101, 2latjcl 16874 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
119, 10syl3an1 1351 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
12 pmapocj.o . . . 4 = (oc‘𝐾)
131, 12, 3, 5polpmapN 34216 . . 3 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑁‘(𝐹‘(𝑋 𝑌))) = (𝐹‘( ‘(𝑋 𝑌))))
148, 11, 13syl2anc 691 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝐹‘(𝑋 𝑌))) = (𝐹‘( ‘(𝑋 𝑌))))
15 eqid 2610 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
161, 15, 3pmapssat 34063 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
17163adant3 1074 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹𝑋) ⊆ (Atoms‘𝐾))
181, 15, 3pmapssat 34063 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
19183adant2 1073 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹𝑌) ⊆ (Atoms‘𝐾))
2015, 4paddssat 34118 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑋) ⊆ (Atoms‘𝐾) ∧ (𝐹𝑌) ⊆ (Atoms‘𝐾)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
218, 17, 19, 20syl3anc 1318 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾))
2215, 53polN 34220 . . 3 ((𝐾 ∈ HL ∧ ((𝐹𝑋) + (𝐹𝑌)) ⊆ (Atoms‘𝐾)) → (𝑁‘(𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌))))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
238, 21, 22syl2anc 691 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑁‘(𝑁‘((𝐹𝑋) + (𝐹𝑌))))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
247, 14, 233eqtr3d 2652 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘( ‘(𝑋 𝑌))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  occoc 15776  joincjn 16767  meetcmee 16768  Latclat 16868  Atomscatm 33568  HLchlt 33655  pmapcpmap 33801  +𝑃cpadd 34099  ⊥𝑃cpolN 34206 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-polarityN 34207 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator