Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjat2 Structured version   Visualization version   GIF version

Theorem pmapjat2 34158
 Description: The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.)
Hypotheses
Ref Expression
pmapjat.b 𝐵 = (Base‘𝐾)
pmapjat.j = (join‘𝐾)
pmapjat.a 𝐴 = (Atoms‘𝐾)
pmapjat.m 𝑀 = (pmap‘𝐾)
pmapjat.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjat2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑄 𝑋)) = ((𝑀𝑄) + (𝑀𝑋)))

Proof of Theorem pmapjat2
StepHypRef Expression
1 pmapjat.b . . 3 𝐵 = (Base‘𝐾)
2 pmapjat.j . . 3 = (join‘𝐾)
3 pmapjat.a . . 3 𝐴 = (Atoms‘𝐾)
4 pmapjat.m . . 3 𝑀 = (pmap‘𝐾)
5 pmapjat.p . . 3 + = (+𝑃𝐾)
61, 2, 3, 4, 5pmapjat1 34157 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
7 hllat 33668 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
873ad2ant1 1075 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ Lat)
91, 3atbase 33594 . . . . 5 (𝑄𝐴𝑄𝐵)
1093ad2ant3 1077 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐵)
11 simp2 1055 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑋𝐵)
121, 2latjcom 16882 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) = (𝑋 𝑄))
138, 10, 11, 12syl3anc 1318 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑄 𝑋) = (𝑋 𝑄))
1413fveq2d 6107 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑄 𝑋)) = (𝑀‘(𝑋 𝑄)))
15 simp1 1054 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ HL)
161, 3, 4pmapssat 34063 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐵) → (𝑀𝑄) ⊆ 𝐴)
1715, 10, 16syl2anc 691 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ⊆ 𝐴)
181, 3, 4pmapssat 34063 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)
19183adant3 1074 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑋) ⊆ 𝐴)
203, 5paddcom 34117 . . 3 ((𝐾 ∈ Lat ∧ (𝑀𝑄) ⊆ 𝐴 ∧ (𝑀𝑋) ⊆ 𝐴) → ((𝑀𝑄) + (𝑀𝑋)) = ((𝑀𝑋) + (𝑀𝑄)))
218, 17, 19, 20syl3anc 1318 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) + (𝑀𝑋)) = ((𝑀𝑋) + (𝑀𝑄)))
226, 14, 213eqtr4d 2654 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑄 𝑋)) = ((𝑀𝑄) + (𝑀𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  joincjn 16767  Latclat 16868  Atomscatm 33568  HLchlt 33655  pmapcpmap 33801  +𝑃cpadd 34099 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-pmap 33808  df-padd 34100 This theorem is referenced by:  atmod1i1  34161
 Copyright terms: Public domain W3C validator