Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.53 | Structured version Visualization version GIF version |
Description: Theorem *5.53 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm5.53 | ⊢ ((((𝜑 ∨ 𝜓) ∨ 𝜒) → 𝜃) ↔ (((𝜑 → 𝜃) ∧ (𝜓 → 𝜃)) ∧ (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaob 818 | . 2 ⊢ ((((𝜑 ∨ 𝜓) ∨ 𝜒) → 𝜃) ↔ (((𝜑 ∨ 𝜓) → 𝜃) ∧ (𝜒 → 𝜃))) | |
2 | jaob 818 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → 𝜃) ↔ ((𝜑 → 𝜃) ∧ (𝜓 → 𝜃))) | |
3 | 2 | anbi1i 727 | . 2 ⊢ ((((𝜑 ∨ 𝜓) → 𝜃) ∧ (𝜒 → 𝜃)) ↔ (((𝜑 → 𝜃) ∧ (𝜓 → 𝜃)) ∧ (𝜒 → 𝜃))) |
4 | 1, 3 | bitri 263 | 1 ⊢ ((((𝜑 ∨ 𝜓) ∨ 𝜒) → 𝜃) ↔ (((𝜑 → 𝜃) ∧ (𝜓 → 𝜃)) ∧ (𝜒 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |