MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.1 Structured version   Visualization version   GIF version

Theorem pm5.1 898
Description: Two propositions are equivalent if they are both true. Theorem *5.1 of [WhiteheadRussell] p. 123. (Contributed by NM, 21-May-1994.)
Assertion
Ref Expression
pm5.1 ((𝜑𝜓) → (𝜑𝜓))

Proof of Theorem pm5.1
StepHypRef Expression
1 pm5.501 355 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21biimpa 500 1 ((𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385
This theorem is referenced by:  pm5.35  940  ssconb  3705  raaan  4032  suppimacnvss  7192  mdsymi  28654  tsbi1  33110  rp-fakenanass  36879  abnotbtaxb  39731  raaan2  39824  elprneb  39939
  Copyright terms: Public domain W3C validator