Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.87 Structured version   Visualization version   GIF version

Theorem pm4.87 606
 Description: Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Eric Schmidt, 26-Oct-2006.)
Assertion
Ref Expression
pm4.87 (((((𝜑𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒))) ∧ ((𝜑 → (𝜓𝜒)) ↔ (𝜓 → (𝜑𝜒)))) ∧ ((𝜓 → (𝜑𝜒)) ↔ ((𝜓𝜑) → 𝜒)))

Proof of Theorem pm4.87
StepHypRef Expression
1 impexp 461 . . 3 (((𝜑𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒)))
2 bi2.04 375 . . 3 ((𝜑 → (𝜓𝜒)) ↔ (𝜓 → (𝜑𝜒)))
31, 2pm3.2i 470 . 2 ((((𝜑𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒))) ∧ ((𝜑 → (𝜓𝜒)) ↔ (𝜓 → (𝜑𝜒))))
4 impexp 461 . . 3 (((𝜓𝜑) → 𝜒) ↔ (𝜓 → (𝜑𝜒)))
54bicomi 213 . 2 ((𝜓 → (𝜑𝜒)) ↔ ((𝜓𝜑) → 𝜒))
63, 5pm3.2i 470 1 (((((𝜑𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒))) ∧ ((𝜑 → (𝜓𝜒)) ↔ (𝜓 → (𝜑𝜒)))) ∧ ((𝜓 → (𝜑𝜒)) ↔ ((𝜓𝜑) → 𝜒)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator