MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.66 Structured version   Visualization version   GIF version

Theorem pm4.66 435
Description: Theorem *4.66 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.66 ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))

Proof of Theorem pm4.66
StepHypRef Expression
1 pm4.64 386 1 ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-or 384
This theorem is referenced by:  pm4.54  513  ifpim123g  36864  hirstL-ax3  39708
  Copyright terms: Public domain W3C validator