MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpmhmlem1 Structured version   Visualization version   GIF version

Theorem pm2mpmhmlem1 20442
Description: Lemma 1 for pm2mpmhm 20444. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpfo.p 𝑃 = (Poly1𝑅)
pm2mpfo.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpfo.b 𝐵 = (Base‘𝐶)
pm2mpfo.m = ( ·𝑠𝑄)
pm2mpfo.e = (.g‘(mulGrp‘𝑄))
pm2mpfo.x 𝑋 = (var1𝐴)
pm2mpfo.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpfo.q 𝑄 = (Poly1𝐴)
pm2mpfo.l 𝐿 = (Base‘𝑄)
pm2mpfo.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpmhmlem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑙 ∈ ℕ0 ↦ ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))))) (𝑙 𝑋))) finSupp (0g𝑄))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘,𝑙   𝐶,𝑘,𝑙   𝑘,𝐿   𝑘,𝑁,𝑙   𝑄,𝑘   𝑅,𝑘   ,𝑘   𝐴,𝑙   𝑃,𝑘   𝑅,𝑙   𝑋,𝑙   ,𝑙   ,𝑙   𝑥,𝑦,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑙)   𝑄(𝑥,𝑦,𝑙)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦,𝑘,𝑙)   (𝑥,𝑦,𝑘)   (𝑥,𝑦)   𝐿(𝑥,𝑦,𝑙)   𝑁(𝑥,𝑦)   𝑋(𝑥,𝑦,𝑘)

Proof of Theorem pm2mpmhmlem1
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6113 . . 3 (0g𝑄) ∈ V
21a1i 11 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (0g𝑄) ∈ V)
3 ovex 6577 . . 3 ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))))) (𝑙 𝑋)) ∈ V
43a1i 11 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑙 ∈ ℕ0) → ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))))) (𝑙 𝑋)) ∈ V)
5 oveq2 6557 . . . . 5 (𝑙 = 𝑛 → (0...𝑙) = (0...𝑛))
6 oveq1 6556 . . . . . . 7 (𝑙 = 𝑛 → (𝑙𝑘) = (𝑛𝑘))
76oveq2d 6565 . . . . . 6 (𝑙 = 𝑛 → (𝑦 decompPMat (𝑙𝑘)) = (𝑦 decompPMat (𝑛𝑘)))
87oveq2d 6565 . . . . 5 (𝑙 = 𝑛 → ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))) = ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))
95, 8mpteq12dv 4663 . . . 4 (𝑙 = 𝑛 → (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘)))))
109oveq2d 6565 . . 3 (𝑙 = 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))))
11 oveq1 6556 . . 3 (𝑙 = 𝑛 → (𝑙 𝑋) = (𝑛 𝑋))
1210, 11oveq12d 6567 . 2 (𝑙 = 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))))) (𝑙 𝑋)) = ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)))
13 simpll 786 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
14 simplr 788 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
15 pm2mpfo.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
16 pm2mpfo.c . . . . . . . . . 10 𝐶 = (𝑁 Mat 𝑃)
1715, 16pmatring 20317 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
1817anim1i 590 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝐶 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
19 3anass 1035 . . . . . . . 8 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) ↔ (𝐶 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
2018, 19sylibr 223 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵))
21 pm2mpfo.b . . . . . . . 8 𝐵 = (Base‘𝐶)
22 eqid 2610 . . . . . . . 8 (.r𝐶) = (.r𝐶)
2321, 22ringcl 18384 . . . . . . 7 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
2420, 23syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
25 eqid 2610 . . . . . . 7 (0g𝑅) = (0g𝑅)
2615, 16, 21, 25pmatcoe1fsupp 20325 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐶)𝑦) ∈ 𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)))
2713, 14, 24, 26syl3anc 1318 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)))
28 oveq1 6556 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑖 → (𝑎(𝑥(.r𝐶)𝑦)𝑏) = (𝑖(𝑥(.r𝐶)𝑦)𝑏))
2928fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑖 → (coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏)))
3029fveq1d 6105 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑖 → ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛))
3130eqeq1d 2612 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑖 → (((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) ↔ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)))
32 oveq2 6557 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑗 → (𝑖(𝑥(.r𝐶)𝑦)𝑏) = (𝑖(𝑥(.r𝐶)𝑦)𝑗))
3332fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑗 → (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗)))
3433fveq1d 6105 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑗 → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛))
3534eqeq1d 2612 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑗 → (((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) ↔ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅)))
3631, 35rspc2va 3294 . . . . . . . . . . . . . . . 16 (((𝑖𝑁𝑗𝑁) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅))
3736expcom 450 . . . . . . . . . . . . . . 15 (∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅)))
3837adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅)))
39383impib 1254 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅))
4039mpt2eq3dva 6617 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
41 pm2mpfo.a . . . . . . . . . . . . . 14 𝐴 = (𝑁 Mat 𝑅)
4241, 25mat0op 20044 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
4342ad3antrrr 762 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
4441matring 20068 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
45 pm2mpfo.q . . . . . . . . . . . . . . . 16 𝑄 = (Poly1𝐴)
4645ply1sca 19444 . . . . . . . . . . . . . . 15 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
4744, 46syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
4847ad3antrrr 762 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → 𝐴 = (Scalar‘𝑄))
4948fveq2d 6107 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (0g𝐴) = (0g‘(Scalar‘𝑄)))
5040, 43, 493eqtr2d 2650 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = (0g‘(Scalar‘𝑄)))
5150oveq1d 6564 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = ((0g‘(Scalar‘𝑄)) (𝑛 𝑋)))
5245ply1lmod 19443 . . . . . . . . . . . . . . 15 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
5344, 52syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
5453adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑄 ∈ LMod)
5554adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑄 ∈ LMod)
5644adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝐴 ∈ Ring)
57 pm2mpfo.x . . . . . . . . . . . . . 14 𝑋 = (var1𝐴)
58 eqid 2610 . . . . . . . . . . . . . 14 (mulGrp‘𝑄) = (mulGrp‘𝑄)
59 pm2mpfo.e . . . . . . . . . . . . . 14 = (.g‘(mulGrp‘𝑄))
60 pm2mpfo.l . . . . . . . . . . . . . 14 𝐿 = (Base‘𝑄)
6145, 57, 58, 59, 60ply1moncl 19462 . . . . . . . . . . . . 13 ((𝐴 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ 𝐿)
6256, 61sylan 487 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ 𝐿)
63 eqid 2610 . . . . . . . . . . . . 13 (Scalar‘𝑄) = (Scalar‘𝑄)
64 pm2mpfo.m . . . . . . . . . . . . 13 = ( ·𝑠𝑄)
65 eqid 2610 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
66 eqid 2610 . . . . . . . . . . . . 13 (0g𝑄) = (0g𝑄)
6760, 63, 64, 65, 66lmod0vs 18719 . . . . . . . . . . . 12 ((𝑄 ∈ LMod ∧ (𝑛 𝑋) ∈ 𝐿) → ((0g‘(Scalar‘𝑄)) (𝑛 𝑋)) = (0g𝑄))
6855, 62, 67syl2anc 691 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((0g‘(Scalar‘𝑄)) (𝑛 𝑋)) = (0g𝑄))
6968adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((0g‘(Scalar‘𝑄)) (𝑛 𝑋)) = (0g𝑄))
7051, 69eqtrd 2644 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))
7170ex 449 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄)))
7271imim2d 55 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))))
7372ralimdva 2945 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))))
7473reximdv 2999 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))))
7527, 74mpd 15 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄)))
7616, 21decpmatval 20389 . . . . . . . . . 10 (((𝑥(.r𝐶)𝑦) ∈ 𝐵𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)))
7724, 76sylan 487 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)))
7877oveq1d 6564 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)))
7978eqeq1d 2612 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄) ↔ ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄)))
8079imbi2d 329 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄)) ↔ (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))))
8180ralbidva 2968 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄)) ↔ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))))
8281rexbidv 3034 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄)) ↔ ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) (𝑛 𝑋)) = (0g𝑄))))
8375, 82mpbird 246 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄)))
84 simpllr 795 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
85 simplr 788 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑥𝐵𝑦𝐵))
86 simpr 476 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
8715, 16, 21, 41decpmatmul 20396 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))))
8884, 85, 86, 87syl3anc 1318 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))))
8988eqcomd 2616 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) = ((𝑥(.r𝐶)𝑦) decompPMat 𝑛))
9089oveq1d 6564 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)) = (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)))
9190eqeq1d 2612 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)) = (0g𝑄) ↔ (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄)))
9291imbi2d 329 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)) = (0g𝑄)) ↔ (𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄))))
9392ralbidva 2968 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)) = (0g𝑄)) ↔ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄))))
9493rexbidv 3034 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)) = (0g𝑄)) ↔ ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r𝐶)𝑦) decompPMat 𝑛) (𝑛 𝑋)) = (0g𝑄))))
9583, 94mpbird 246 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))) (𝑛 𝑋)) = (0g𝑄)))
962, 4, 12, 95mptnn0fsuppd 12660 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑙 ∈ ℕ0 ↦ ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))))) (𝑙 𝑋))) finSupp (0g𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841   finSupp cfsupp 8158  0cc0 9815   < clt 9953  cmin 10145  0cn0 11169  ...cfz 12197  Basecbs 15695  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923   Σg cgsu 15924  .gcmg 17363  mulGrpcmgp 18312  Ringcrg 18370  LModclmod 18686  var1cv1 19367  Poly1cpl1 19368  coe1cco1 19369   Mat cmat 20032   decompPMat cdecpmat 20386   pMatToMatPoly cpm2mp 20416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-dsmm 19895  df-frlm 19910  df-mamu 20009  df-mat 20033  df-decpmat 20387
This theorem is referenced by:  pm2mpmhmlem2  20443
  Copyright terms: Public domain W3C validator