MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.31 Structured version   Visualization version   GIF version

Theorem pm2.31 546
Description: Theorem *2.31 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.31 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) ∨ 𝜒))

Proof of Theorem pm2.31
StepHypRef Expression
1 orass 545 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
21biimpri 217 1 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) ∨ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-or 384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator