Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm11.53v | Structured version Visualization version GIF version |
Description: Version of pm11.53 2167 with a dv condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020.) |
Ref | Expression |
---|---|
pm11.53v | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1855 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑦𝜓)) | |
2 | 1 | albii 1737 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑥(𝜑 → ∀𝑦𝜓)) |
3 | 19.23v 1889 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)) | |
4 | 2, 3 | bitri 263 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 ∃wex 1695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 |
This theorem depends on definitions: df-bi 196 df-ex 1696 |
This theorem is referenced by: sbnf2 2427 |
Copyright terms: Public domain | W3C validator |