Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm10.541 Structured version   Visualization version   GIF version

Theorem pm10.541 37588
 Description: Theorem *10.541 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm10.541 (∀𝑥(𝜑 → (𝜒𝜓)) ↔ (𝜒 ∨ ∀𝑥(𝜑𝜓)))
Distinct variable group:   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem pm10.541
StepHypRef Expression
1 bi2.04 375 . . . 4 ((𝜑 → (¬ 𝜒𝜓)) ↔ (¬ 𝜒 → (𝜑𝜓)))
21albii 1737 . . 3 (∀𝑥(𝜑 → (¬ 𝜒𝜓)) ↔ ∀𝑥𝜒 → (𝜑𝜓)))
3 19.21v 1855 . . 3 (∀𝑥𝜒 → (𝜑𝜓)) ↔ (¬ 𝜒 → ∀𝑥(𝜑𝜓)))
42, 3bitri 263 . 2 (∀𝑥(𝜑 → (¬ 𝜒𝜓)) ↔ (¬ 𝜒 → ∀𝑥(𝜑𝜓)))
5 df-or 384 . . . 4 ((𝜒𝜓) ↔ (¬ 𝜒𝜓))
65imbi2i 325 . . 3 ((𝜑 → (𝜒𝜓)) ↔ (𝜑 → (¬ 𝜒𝜓)))
76albii 1737 . 2 (∀𝑥(𝜑 → (𝜒𝜓)) ↔ ∀𝑥(𝜑 → (¬ 𝜒𝜓)))
8 df-or 384 . 2 ((𝜒 ∨ ∀𝑥(𝜑𝜓)) ↔ (¬ 𝜒 → ∀𝑥(𝜑𝜓)))
94, 7, 83bitr4i 291 1 (∀𝑥(𝜑 → (𝜒𝜓)) ↔ (𝜒 ∨ ∀𝑥(𝜑𝜓)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827 This theorem depends on definitions:  df-bi 196  df-or 384  df-ex 1696 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator