Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm10.252 Structured version   Visualization version   GIF version

Theorem pm10.252 37582
Description: Theorem *10.252 in [WhiteheadRussell] p. 149. (Contributed by Andrew Salmon, 17-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
pm10.252 (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑)

Proof of Theorem pm10.252
StepHypRef Expression
1 df-ex 1696 . . 3 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
21bicomi 213 . 2 (¬ ∀𝑥 ¬ 𝜑 ↔ ∃𝑥𝜑)
32con1bii 345 1 (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wal 1473  wex 1695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-ex 1696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator