Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plyrecj | Structured version Visualization version GIF version |
Description: A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
plyrecj | ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 12634 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (0...(deg‘𝐹)) ∈ Fin) | |
2 | 0re 9919 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
3 | eqid 2610 | . . . . . . . . . 10 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
4 | 3 | coef2 23791 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → (coeff‘𝐹):ℕ0⟶ℝ) |
5 | 2, 4 | mpan2 703 | . . . . . . . 8 ⊢ (𝐹 ∈ (Poly‘ℝ) → (coeff‘𝐹):ℕ0⟶ℝ) |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (coeff‘𝐹):ℕ0⟶ℝ) |
7 | elfznn0 12302 | . . . . . . 7 ⊢ (𝑥 ∈ (0...(deg‘𝐹)) → 𝑥 ∈ ℕ0) | |
8 | ffvelrn 6265 | . . . . . . 7 ⊢ (((coeff‘𝐹):ℕ0⟶ℝ ∧ 𝑥 ∈ ℕ0) → ((coeff‘𝐹)‘𝑥) ∈ ℝ) | |
9 | 6, 7, 8 | syl2an 493 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑥) ∈ ℝ) |
10 | 9 | recnd 9947 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑥) ∈ ℂ) |
11 | simpr 476 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ) | |
12 | expcl 12740 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝐴↑𝑥) ∈ ℂ) | |
13 | 11, 7, 12 | syl2an 493 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (𝐴↑𝑥) ∈ ℂ) |
14 | 10, 13 | mulcld 9939 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥)) ∈ ℂ) |
15 | 1, 14 | fsumcj 14383 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(∗‘(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥)))) |
16 | 10, 13 | cjmuld 13809 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = ((∗‘((coeff‘𝐹)‘𝑥)) · (∗‘(𝐴↑𝑥)))) |
17 | 9 | cjred 13814 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘((coeff‘𝐹)‘𝑥)) = ((coeff‘𝐹)‘𝑥)) |
18 | cjexp 13738 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (∗‘(𝐴↑𝑥)) = ((∗‘𝐴)↑𝑥)) | |
19 | 11, 7, 18 | syl2an 493 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(𝐴↑𝑥)) = ((∗‘𝐴)↑𝑥)) |
20 | 17, 19 | oveq12d 6567 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → ((∗‘((coeff‘𝐹)‘𝑥)) · (∗‘(𝐴↑𝑥))) = (((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
21 | 16, 20 | eqtrd 2644 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) ∧ 𝑥 ∈ (0...(deg‘𝐹))) → (∗‘(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = (((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
22 | 21 | sumeq2dv 14281 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → Σ𝑥 ∈ (0...(deg‘𝐹))(∗‘(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
23 | 15, 22 | eqtrd 2644 | . 2 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
24 | eqid 2610 | . . . 4 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
25 | 3, 24 | coeid2 23799 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (𝐹‘𝐴) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥))) |
26 | 25 | fveq2d 6107 | . 2 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (∗‘Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · (𝐴↑𝑥)))) |
27 | cjcl 13693 | . . 3 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
28 | 3, 24 | coeid2 23799 | . . 3 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ (∗‘𝐴) ∈ ℂ) → (𝐹‘(∗‘𝐴)) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
29 | 27, 28 | sylan2 490 | . 2 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (𝐹‘(∗‘𝐴)) = Σ𝑥 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑥) · ((∗‘𝐴)↑𝑥))) |
30 | 23, 26, 29 | 3eqtr4d 2654 | 1 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 ℝcr 9814 0cc0 9815 · cmul 9820 ℕ0cn0 11169 ...cfz 12197 ↑cexp 12722 ∗ccj 13684 Σcsu 14264 Polycply 23744 coeffccoe 23746 degcdgr 23747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-fz 12198 df-fzo 12335 df-fl 12455 df-seq 12664 df-exp 12723 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 df-rlim 14068 df-sum 14265 df-0p 23243 df-ply 23748 df-coe 23750 df-dgr 23751 |
This theorem is referenced by: plyreres 23842 aacjcl 23886 |
Copyright terms: Public domain | W3C validator |