MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1val Structured version   Visualization version   GIF version

Theorem ply1val 19385
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
ply1val.1 𝑃 = (Poly1𝑅)
ply1val.2 𝑆 = (PwSer1𝑅)
Assertion
Ref Expression
ply1val 𝑃 = (𝑆s (Base‘(1𝑜 mPoly 𝑅)))

Proof of Theorem ply1val
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ply1val.1 . 2 𝑃 = (Poly1𝑅)
2 fveq2 6103 . . . . . 6 (𝑟 = 𝑅 → (PwSer1𝑟) = (PwSer1𝑅))
3 ply1val.2 . . . . . 6 𝑆 = (PwSer1𝑅)
42, 3syl6eqr 2662 . . . . 5 (𝑟 = 𝑅 → (PwSer1𝑟) = 𝑆)
5 oveq2 6557 . . . . . 6 (𝑟 = 𝑅 → (1𝑜 mPoly 𝑟) = (1𝑜 mPoly 𝑅))
65fveq2d 6107 . . . . 5 (𝑟 = 𝑅 → (Base‘(1𝑜 mPoly 𝑟)) = (Base‘(1𝑜 mPoly 𝑅)))
74, 6oveq12d 6567 . . . 4 (𝑟 = 𝑅 → ((PwSer1𝑟) ↾s (Base‘(1𝑜 mPoly 𝑟))) = (𝑆s (Base‘(1𝑜 mPoly 𝑅))))
8 df-ply1 19373 . . . 4 Poly1 = (𝑟 ∈ V ↦ ((PwSer1𝑟) ↾s (Base‘(1𝑜 mPoly 𝑟))))
9 ovex 6577 . . . 4 (𝑆s (Base‘(1𝑜 mPoly 𝑅))) ∈ V
107, 8, 9fvmpt 6191 . . 3 (𝑅 ∈ V → (Poly1𝑅) = (𝑆s (Base‘(1𝑜 mPoly 𝑅))))
11 fvprc 6097 . . . . 5 𝑅 ∈ V → (Poly1𝑅) = ∅)
12 ress0 15761 . . . . 5 (∅ ↾s (Base‘(1𝑜 mPoly 𝑅))) = ∅
1311, 12syl6eqr 2662 . . . 4 𝑅 ∈ V → (Poly1𝑅) = (∅ ↾s (Base‘(1𝑜 mPoly 𝑅))))
14 fvprc 6097 . . . . . 6 𝑅 ∈ V → (PwSer1𝑅) = ∅)
153, 14syl5eq 2656 . . . . 5 𝑅 ∈ V → 𝑆 = ∅)
1615oveq1d 6564 . . . 4 𝑅 ∈ V → (𝑆s (Base‘(1𝑜 mPoly 𝑅))) = (∅ ↾s (Base‘(1𝑜 mPoly 𝑅))))
1713, 16eqtr4d 2647 . . 3 𝑅 ∈ V → (Poly1𝑅) = (𝑆s (Base‘(1𝑜 mPoly 𝑅))))
1810, 17pm2.61i 175 . 2 (Poly1𝑅) = (𝑆s (Base‘(1𝑜 mPoly 𝑅)))
191, 18eqtri 2632 1 𝑃 = (𝑆s (Base‘(1𝑜 mPoly 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  Vcvv 3173  c0 3874  cfv 5804  (class class class)co 6549  1𝑜c1o 7440  Basecbs 15695  s cress 15696   mPoly cmpl 19174  PwSer1cps1 19366  Poly1cpl1 19368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-slot 15699  df-base 15700  df-ress 15702  df-ply1 19373
This theorem is referenced by:  ply1bas  19386  ply1crng  19389  ply1assa  19390  ply1bascl  19394  ply1plusg  19416  ply1vsca  19417  ply1mulr  19418  ply1ring  19439  ply1lmod  19443  ply1sca  19444
  Copyright terms: Public domain W3C validator