MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfo Structured version   Visualization version   GIF version

Theorem pjfo 19878
Description: A projection is a surjection onto the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjf.k 𝐾 = (proj‘𝑊)
pjf.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
pjfo ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉onto𝑇)

Proof of Theorem pjfo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pjf.k . . 3 𝐾 = (proj‘𝑊)
2 pjf.v . . 3 𝑉 = (Base‘𝑊)
31, 2pjf2 19877 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉𝑇)
4 frn 5966 . . . 4 ((𝐾𝑇):𝑉𝑇 → ran (𝐾𝑇) ⊆ 𝑇)
53, 4syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ran (𝐾𝑇) ⊆ 𝑇)
6 eqid 2610 . . . . . . . . . 10 (ocv‘𝑊) = (ocv‘𝑊)
7 eqid 2610 . . . . . . . . . 10 (proj1𝑊) = (proj1𝑊)
86, 7, 1pjval 19873 . . . . . . . . 9 (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
98ad2antlr 759 . . . . . . . 8 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
109fveq1d 6105 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → ((𝐾𝑇)‘𝑥) = ((𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇))‘𝑥))
11 eqid 2610 . . . . . . . 8 (+g𝑊) = (+g𝑊)
12 eqid 2610 . . . . . . . 8 (LSSum‘𝑊) = (LSSum‘𝑊)
13 eqid 2610 . . . . . . . 8 (0g𝑊) = (0g𝑊)
14 eqid 2610 . . . . . . . 8 (Cntz‘𝑊) = (Cntz‘𝑊)
15 phllmod 19794 . . . . . . . . . . 11 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
1615adantr 480 . . . . . . . . . 10 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod)
17 eqid 2610 . . . . . . . . . . 11 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1817lsssssubg 18779 . . . . . . . . . 10 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
1916, 18syl 17 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
202, 17, 6, 12, 1pjdm2 19874 . . . . . . . . . 10 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉)))
2120simprbda 651 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊))
2219, 21sseldd 3569 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊))
232, 17lssss 18758 . . . . . . . . . . 11 (𝑇 ∈ (LSubSp‘𝑊) → 𝑇𝑉)
2421, 23syl 17 . . . . . . . . . 10 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇𝑉)
252, 6, 17ocvlss 19835 . . . . . . . . . 10 ((𝑊 ∈ PreHil ∧ 𝑇𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
2624, 25syldan 486 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
2719, 26sseldd 3569 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊))
286, 17, 13ocvin 19837 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
2921, 28syldan 486 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
30 lmodabl 18733 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
3116, 30syl 17 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel)
3214, 31, 22, 27ablcntzd 18083 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇)))
3311, 12, 13, 14, 22, 27, 29, 32, 7pj1lid 17937 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → ((𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇))‘𝑥) = 𝑥)
3410, 33eqtrd 2644 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → ((𝐾𝑇)‘𝑥) = 𝑥)
35 ffn 5958 . . . . . . . . 9 ((𝐾𝑇):𝑉𝑇 → (𝐾𝑇) Fn 𝑉)
363, 35syl 17 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇) Fn 𝑉)
3736adantr 480 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → (𝐾𝑇) Fn 𝑉)
3824sselda 3568 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → 𝑥𝑉)
39 fnfvelrn 6264 . . . . . . 7 (((𝐾𝑇) Fn 𝑉𝑥𝑉) → ((𝐾𝑇)‘𝑥) ∈ ran (𝐾𝑇))
4037, 38, 39syl2anc 691 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → ((𝐾𝑇)‘𝑥) ∈ ran (𝐾𝑇))
4134, 40eqeltrrd 2689 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → 𝑥 ∈ ran (𝐾𝑇))
4241ex 449 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑥𝑇𝑥 ∈ ran (𝐾𝑇)))
4342ssrdv 3574 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ran (𝐾𝑇))
445, 43eqssd 3585 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ran (𝐾𝑇) = 𝑇)
45 dffo2 6032 . 2 ((𝐾𝑇):𝑉onto𝑇 ↔ ((𝐾𝑇):𝑉𝑇 ∧ ran (𝐾𝑇) = 𝑇))
463, 44, 45sylanbrc 695 1 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cin 3539  wss 3540  {csn 4125  dom cdm 5038  ran crn 5039   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  SubGrpcsubg 17411  Cntzccntz 17571  LSSumclsm 17872  proj1cpj1 17873  Abelcabl 18017  LModclmod 18686  LSubSpclss 18753  PreHilcphl 19788  ocvcocv 19823  projcpj 19863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-sca 15784  df-vsca 15785  df-ip 15786  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-cntz 17573  df-lsm 17874  df-pj1 17875  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lmhm 18843  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-phl 19790  df-ocv 19826  df-pj 19866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator