MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinq Structured version   Visualization version   GIF version

Theorem pinq 9628
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pinq (𝐴N → ⟨𝐴, 1𝑜⟩ ∈ Q)

Proof of Theorem pinq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pi 9584 . . . 4 1𝑜N
2 opelxpi 5072 . . . 4 ((𝐴N ∧ 1𝑜N) → ⟨𝐴, 1𝑜⟩ ∈ (N × N))
31, 2mpan2 703 . . 3 (𝐴N → ⟨𝐴, 1𝑜⟩ ∈ (N × N))
4 nlt1pi 9607 . . . . . 6 ¬ (2nd𝑦) <N 1𝑜
51elexi 3186 . . . . . . . 8 1𝑜 ∈ V
6 op2ndg 7072 . . . . . . . 8 ((𝐴N ∧ 1𝑜 ∈ V) → (2nd ‘⟨𝐴, 1𝑜⟩) = 1𝑜)
75, 6mpan2 703 . . . . . . 7 (𝐴N → (2nd ‘⟨𝐴, 1𝑜⟩) = 1𝑜)
87breq2d 4595 . . . . . 6 (𝐴N → ((2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩) ↔ (2nd𝑦) <N 1𝑜))
94, 8mtbiri 316 . . . . 5 (𝐴N → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩))
109a1d 25 . . . 4 (𝐴N → (⟨𝐴, 1𝑜⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩)))
1110ralrimivw 2950 . . 3 (𝐴N → ∀𝑦 ∈ (N × N)(⟨𝐴, 1𝑜⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩)))
12 breq1 4586 . . . . . 6 (𝑥 = ⟨𝐴, 1𝑜⟩ → (𝑥 ~Q 𝑦 ↔ ⟨𝐴, 1𝑜⟩ ~Q 𝑦))
13 fveq2 6103 . . . . . . . 8 (𝑥 = ⟨𝐴, 1𝑜⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 1𝑜⟩))
1413breq2d 4595 . . . . . . 7 (𝑥 = ⟨𝐴, 1𝑜⟩ → ((2nd𝑦) <N (2nd𝑥) ↔ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩)))
1514notbid 307 . . . . . 6 (𝑥 = ⟨𝐴, 1𝑜⟩ → (¬ (2nd𝑦) <N (2nd𝑥) ↔ ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩)))
1612, 15imbi12d 333 . . . . 5 (𝑥 = ⟨𝐴, 1𝑜⟩ → ((𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥)) ↔ (⟨𝐴, 1𝑜⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩))))
1716ralbidv 2969 . . . 4 (𝑥 = ⟨𝐴, 1𝑜⟩ → (∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥)) ↔ ∀𝑦 ∈ (N × N)(⟨𝐴, 1𝑜⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩))))
1817elrab 3331 . . 3 (⟨𝐴, 1𝑜⟩ ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))} ↔ (⟨𝐴, 1𝑜⟩ ∈ (N × N) ∧ ∀𝑦 ∈ (N × N)(⟨𝐴, 1𝑜⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩))))
193, 11, 18sylanbrc 695 . 2 (𝐴N → ⟨𝐴, 1𝑜⟩ ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))})
20 df-nq 9613 . 2 Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))}
2119, 20syl6eleqr 2699 1 (𝐴N → ⟨𝐴, 1𝑜⟩ ∈ Q)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cop 4131   class class class wbr 4583   × cxp 5036  cfv 5804  2nd c2nd 7058  1𝑜c1o 7440  Ncnpi 9545   <N clti 9548   ~Q ceq 9552  Qcnq 9553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fv 5812  df-om 6958  df-2nd 7060  df-1o 7447  df-ni 9573  df-lti 9576  df-nq 9613
This theorem is referenced by:  1nq  9629  archnq  9681  prlem934  9734
  Copyright terms: Public domain W3C validator