 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinq Structured version   Visualization version   GIF version

Theorem pinq 9628
 Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pinq (𝐴N → ⟨𝐴, 1𝑜⟩ ∈ Q)

Proof of Theorem pinq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pi 9584 . . . 4 1𝑜N
2 opelxpi 5072 . . . 4 ((𝐴N ∧ 1𝑜N) → ⟨𝐴, 1𝑜⟩ ∈ (N × N))
31, 2mpan2 703 . . 3 (𝐴N → ⟨𝐴, 1𝑜⟩ ∈ (N × N))
4 nlt1pi 9607 . . . . . 6 ¬ (2nd𝑦) <N 1𝑜
51elexi 3186 . . . . . . . 8 1𝑜 ∈ V
6 op2ndg 7072 . . . . . . . 8 ((𝐴N ∧ 1𝑜 ∈ V) → (2nd ‘⟨𝐴, 1𝑜⟩) = 1𝑜)
75, 6mpan2 703 . . . . . . 7 (𝐴N → (2nd ‘⟨𝐴, 1𝑜⟩) = 1𝑜)
87breq2d 4595 . . . . . 6 (𝐴N → ((2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩) ↔ (2nd𝑦) <N 1𝑜))
94, 8mtbiri 316 . . . . 5 (𝐴N → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩))
109a1d 25 . . . 4 (𝐴N → (⟨𝐴, 1𝑜⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩)))
1110ralrimivw 2950 . . 3 (𝐴N → ∀𝑦 ∈ (N × N)(⟨𝐴, 1𝑜⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩)))
12 breq1 4586 . . . . . 6 (𝑥 = ⟨𝐴, 1𝑜⟩ → (𝑥 ~Q 𝑦 ↔ ⟨𝐴, 1𝑜⟩ ~Q 𝑦))
13 fveq2 6103 . . . . . . . 8 (𝑥 = ⟨𝐴, 1𝑜⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 1𝑜⟩))
1413breq2d 4595 . . . . . . 7 (𝑥 = ⟨𝐴, 1𝑜⟩ → ((2nd𝑦) <N (2nd𝑥) ↔ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩)))
1514notbid 307 . . . . . 6 (𝑥 = ⟨𝐴, 1𝑜⟩ → (¬ (2nd𝑦) <N (2nd𝑥) ↔ ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩)))
1612, 15imbi12d 333 . . . . 5 (𝑥 = ⟨𝐴, 1𝑜⟩ → ((𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥)) ↔ (⟨𝐴, 1𝑜⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩))))
1716ralbidv 2969 . . . 4 (𝑥 = ⟨𝐴, 1𝑜⟩ → (∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥)) ↔ ∀𝑦 ∈ (N × N)(⟨𝐴, 1𝑜⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩))))
1817elrab 3331 . . 3 (⟨𝐴, 1𝑜⟩ ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))} ↔ (⟨𝐴, 1𝑜⟩ ∈ (N × N) ∧ ∀𝑦 ∈ (N × N)(⟨𝐴, 1𝑜⟩ ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd ‘⟨𝐴, 1𝑜⟩))))
193, 11, 18sylanbrc 695 . 2 (𝐴N → ⟨𝐴, 1𝑜⟩ ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))})
20 df-nq 9613 . 2 Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))}
2119, 20syl6eleqr 2699 1 (𝐴N → ⟨𝐴, 1𝑜⟩ ∈ Q)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  Vcvv 3173  ⟨cop 4131   class class class wbr 4583   × cxp 5036  ‘cfv 5804  2nd c2nd 7058  1𝑜c1o 7440  Ncnpi 9545
 Copyright terms: Public domain W3C validator