Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimrecltpos Structured version   Visualization version   GIF version

Theorem pimrecltpos 39596
Description: The preimage of an unbounded below, open interval, with positive upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimrecltpos.x 𝑥𝜑
pimrecltpos.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
pimrecltpos.n ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
pimrecltpos.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
pimrecltpos (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))

Proof of Theorem pimrecltpos
StepHypRef Expression
1 pimrecltpos.x . . 3 𝑥𝜑
2 rabidim1 38318 . . . . . . . . . . 11 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥𝐴)
32adantr 480 . . . . . . . . . 10 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥𝐴)
4 simpr 476 . . . . . . . . . 10 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝐵 < 0)
53, 4jca 553 . . . . . . . . 9 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → (𝑥𝐴𝐵 < 0))
6 rabid 3095 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < 0} ↔ (𝑥𝐴𝐵 < 0))
75, 6sylibr 223 . . . . . . . 8 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
8 elun2 3743 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
97, 8syl 17 . . . . . . 7 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
109adantll 746 . . . . . 6 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
11 0red 9920 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 ∈ ℝ)
12 pimrecltpos.b . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
132, 12sylan2 490 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ℝ)
1413adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 𝐵 ∈ ℝ)
152adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥𝐴)
16 pimrecltpos.n . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
1716necomd 2837 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≠ 𝐵)
1815, 17syldan 486 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ≠ 𝐵)
1918adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 ≠ 𝐵)
20 simpr 476 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → ¬ 𝐵 < 0)
2111, 14, 19, 20lttri5d 38454 . . . . . . 7 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 < 𝐵)
2215adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥𝐴)
2313adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
24 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 0 < 𝐵)
2523, 24elrpd 11745 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ+)
26 pimrecltpos.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ+)
2726ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ+)
28 rabidim2 38313 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → (1 / 𝐵) < 𝐶)
2928ad2antlr 759 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (1 / 𝐵) < 𝐶)
3025, 27, 29ltrec1d 11768 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (1 / 𝐶) < 𝐵)
3122, 30jca 553 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (𝑥𝐴 ∧ (1 / 𝐶) < 𝐵))
32 rabid 3095 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ↔ (𝑥𝐴 ∧ (1 / 𝐶) < 𝐵))
3331, 32sylibr 223 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵})
34 elun1 3742 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3533, 34syl 17 . . . . . . 7 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3621, 35syldan 486 . . . . . 6 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3710, 36pm2.61dan 828 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3837ex 449 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
3932simplbi 475 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → 𝑥𝐴)
4039adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥𝐴)
4126adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐶 ∈ ℝ+)
4240, 12syldan 486 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐵 ∈ ℝ)
43 0red 9920 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 ∈ ℝ)
4441rprecred 11759 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐶) ∈ ℝ)
4526rpred 11748 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
4626rpgt0d 11751 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐶)
4745, 46recgt0d 10837 . . . . . . . . . . . . 13 (𝜑 → 0 < (1 / 𝐶))
4847adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 < (1 / 𝐶))
4932simprbi 479 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → (1 / 𝐶) < 𝐵)
5049adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐶) < 𝐵)
5143, 44, 42, 48, 50lttrd 10077 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 < 𝐵)
5242, 51elrpd 11745 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐵 ∈ ℝ+)
5341, 52, 50ltrec1d 11768 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐵) < 𝐶)
5440, 53jca 553 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
55 rabid 3095 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
5654, 55sylibr 223 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
5756adantlr 747 . . . . . 6 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
58 simpll 786 . . . . . . 7 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝜑)
59 elunnel1 3716 . . . . . . . 8 ((𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
6059adantll 746 . . . . . . 7 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
616simplbi 475 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝑥𝐴)
6261adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝑥𝐴)
6312, 16rereccld 10731 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℝ)
6462, 63syldan 486 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) ∈ ℝ)
65 0red 9920 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 0 ∈ ℝ)
6645adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐶 ∈ ℝ)
6762, 12syldan 486 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐵 ∈ ℝ)
686simprbi 479 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝐵 < 0)
6968adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐵 < 0)
7067, 69reclt0d 38548 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) < 0)
7146adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 0 < 𝐶)
7264, 65, 66, 70, 71lttrd 10077 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) < 𝐶)
7362, 72jca 553 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
7473, 55sylibr 223 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7558, 60, 74syl2anc 691 . . . . . 6 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7657, 75pm2.61dan 828 . . . . 5 ((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7776ex 449 . . . 4 (𝜑 → (𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}))
7838, 77impbid 201 . . 3 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
791, 78alrimi 2069 . 2 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
80 nfrab1 3099 . . 3 𝑥{𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}
81 nfrab1 3099 . . . 4 𝑥{𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}
82 nfrab1 3099 . . . 4 𝑥{𝑥𝐴𝐵 < 0}
8381, 82nfun 3731 . . 3 𝑥({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})
8480, 83dfcleqf 38281 . 2 ({𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
8579, 84sylibr 223 1 (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wnf 1699  wcel 1977  wne 2780  {crab 2900  cun 3538   class class class wbr 4583  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   < clt 9953   / cdiv 10563  +crp 11708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-rp 11709
This theorem is referenced by:  smfrec  39674
  Copyright terms: Public domain W3C validator