Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimconstlt0 Structured version   Visualization version   GIF version

Theorem pimconstlt0 39591
Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound smaller or equal to the constant, is the empty set. Second part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimconstlt0.x 𝑥𝜑
pimconstlt0.b (𝜑𝐵 ∈ ℝ)
pimconstlt0.f 𝐹 = (𝑥𝐴𝐵)
pimconstlt0.c (𝜑𝐶 ∈ ℝ*)
pimconstlt0.l (𝜑𝐶𝐵)
Assertion
Ref Expression
pimconstlt0 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem pimconstlt0
StepHypRef Expression
1 pimconstlt0.x . . 3 𝑥𝜑
2 pimconstlt0.l . . . . . . 7 (𝜑𝐶𝐵)
32adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝐵)
4 pimconstlt0.f . . . . . . . 8 𝐹 = (𝑥𝐴𝐵)
54a1i 11 . . . . . . 7 (𝜑𝐹 = (𝑥𝐴𝐵))
6 pimconstlt0.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
76adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
85, 7fvmpt2d 6202 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
93, 8breqtrrd 4611 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ≤ (𝐹𝑥))
10 pimconstlt0.c . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
1110adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
128, 7eqeltrd 2688 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1312rexrd 9968 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ*)
1411, 13xrlenltd 9983 . . . . 5 ((𝜑𝑥𝐴) → (𝐶 ≤ (𝐹𝑥) ↔ ¬ (𝐹𝑥) < 𝐶))
159, 14mpbid 221 . . . 4 ((𝜑𝑥𝐴) → ¬ (𝐹𝑥) < 𝐶)
1615ex 449 . . 3 (𝜑 → (𝑥𝐴 → ¬ (𝐹𝑥) < 𝐶))
171, 16ralrimi 2940 . 2 (𝜑 → ∀𝑥𝐴 ¬ (𝐹𝑥) < 𝐶)
18 rabeq0 3911 . 2 ({𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐹𝑥) < 𝐶)
1917, 18sylibr 223 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wnf 1699  wcel 1977  wral 2896  {crab 2900  c0 3874   class class class wbr 4583  cmpt 4643  cfv 5804  cr 9814  *cxr 9952   < clt 9953  cle 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-xr 9957  df-le 9959
This theorem is referenced by:  smfconst  39636
  Copyright terms: Public domain W3C validator