MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfr Structured version   Visualization version   GIF version

Theorem pi1xfr 22663
Description: Given a path 𝐹 and its inverse 𝐼 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
Assertion
Ref Expression
pi1xfr (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Distinct variable groups:   𝑥,𝑔,𝐵   𝑔,𝐹,𝑥   𝑔,𝐼,𝑥   𝜑,𝑔,𝑥   𝑔,𝐽,𝑥   𝑃,𝑔,𝑥   𝑄,𝑔,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝑋(𝑥,𝑔)

Proof of Theorem pi1xfr
Dummy variables 𝑓 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1xfr.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 iitopon 22490 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
32a1i 11 . . . . . 6 (𝜑 → II ∈ (TopOn‘(0[,]1)))
4 pi1xfr.f . . . . . 6 (𝜑𝐹 ∈ (II Cn 𝐽))
5 cnf2 20863 . . . . . 6 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
63, 1, 4, 5syl3anc 1318 . . . . 5 (𝜑𝐹:(0[,]1)⟶𝑋)
7 0elunit 12161 . . . . 5 0 ∈ (0[,]1)
8 ffvelrn 6265 . . . . 5 ((𝐹:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → (𝐹‘0) ∈ 𝑋)
96, 7, 8sylancl 693 . . . 4 (𝜑 → (𝐹‘0) ∈ 𝑋)
10 pi1xfr.p . . . . 5 𝑃 = (𝐽 π1 (𝐹‘0))
1110pi1grp 22658 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹‘0) ∈ 𝑋) → 𝑃 ∈ Grp)
121, 9, 11syl2anc 691 . . 3 (𝜑𝑃 ∈ Grp)
13 1elunit 12162 . . . . 5 1 ∈ (0[,]1)
14 ffvelrn 6265 . . . . 5 ((𝐹:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ 𝑋)
156, 13, 14sylancl 693 . . . 4 (𝜑 → (𝐹‘1) ∈ 𝑋)
16 pi1xfr.q . . . . 5 𝑄 = (𝐽 π1 (𝐹‘1))
1716pi1grp 22658 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹‘1) ∈ 𝑋) → 𝑄 ∈ Grp)
181, 15, 17syl2anc 691 . . 3 (𝜑𝑄 ∈ Grp)
1912, 18jca 553 . 2 (𝜑 → (𝑃 ∈ Grp ∧ 𝑄 ∈ Grp))
20 pi1xfr.b . . . 4 𝐵 = (Base‘𝑃)
21 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
22 pi1xfr.i . . . . . . 7 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
2322pcorevcl 22633 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
244, 23syl 17 . . . . 5 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
2524simp1d 1066 . . . 4 (𝜑𝐼 ∈ (II Cn 𝐽))
2624simp2d 1067 . . . . 5 (𝜑 → (𝐼‘0) = (𝐹‘1))
2726eqcomd 2616 . . . 4 (𝜑 → (𝐹‘1) = (𝐼‘0))
2824simp3d 1068 . . . 4 (𝜑 → (𝐼‘1) = (𝐹‘0))
2910, 16, 20, 21, 1, 4, 25, 27, 28pi1xfrf 22661 . . 3 (𝜑𝐺:𝐵⟶(Base‘𝑄))
3020a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑃))
3110, 1, 9, 30pi1bas2 22649 . . . . . . 7 (𝜑𝐵 = ( 𝐵 / ( ≃ph𝐽)))
3231eleq2d 2673 . . . . . 6 (𝜑 → (𝑦𝐵𝑦 ∈ ( 𝐵 / ( ≃ph𝐽))))
3332biimpa 500 . . . . 5 ((𝜑𝑦𝐵) → 𝑦 ∈ ( 𝐵 / ( ≃ph𝐽)))
34 eqid 2610 . . . . . 6 ( 𝐵 / ( ≃ph𝐽)) = ( 𝐵 / ( ≃ph𝐽))
35 oveq1 6556 . . . . . . . . 9 ([𝑓]( ≃ph𝐽) = 𝑦 → ([𝑓]( ≃ph𝐽)(+g𝑃)𝑧) = (𝑦(+g𝑃)𝑧))
3635fveq2d 6107 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = (𝐺‘(𝑦(+g𝑃)𝑧)))
37 fveq2 6103 . . . . . . . . 9 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘[𝑓]( ≃ph𝐽)) = (𝐺𝑦))
3837oveq1d 6564 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
3936, 38eqeq12d 2625 . . . . . . 7 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
4039ralbidv 2969 . . . . . 6 ([𝑓]( ≃ph𝐽) = 𝑦 → (∀𝑧𝐵 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ ∀𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
4131eleq2d 2673 . . . . . . . . . 10 (𝜑 → (𝑧𝐵𝑧 ∈ ( 𝐵 / ( ≃ph𝐽))))
4241biimpa 500 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝑧 ∈ ( 𝐵 / ( ≃ph𝐽)))
4342adantlr 747 . . . . . . . 8 (((𝜑𝑓 𝐵) ∧ 𝑧𝐵) → 𝑧 ∈ ( 𝐵 / ( ≃ph𝐽)))
44 oveq2 6557 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = ([𝑓]( ≃ph𝐽)(+g𝑃)𝑧))
4544fveq2d 6107 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)))
46 fveq2 6103 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘[]( ≃ph𝐽)) = (𝐺𝑧))
4746oveq2d 6565 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
4845, 47eqeq12d 2625 . . . . . . . . 9 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) ↔ (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧))))
49 phtpcer 22602 . . . . . . . . . . . . . 14 ( ≃ph𝐽) Er (II Cn 𝐽)
5049a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → ( ≃ph𝐽) Er (II Cn 𝐽))
5110, 1, 9, 30pi1eluni 22650 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑓 𝐵 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝐹‘0) ∧ (𝑓‘1) = (𝐹‘0))))
5251biimpa 500 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵) → (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = (𝐹‘0) ∧ (𝑓‘1) = (𝐹‘0)))
5352simp1d 1066 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵) → 𝑓 ∈ (II Cn 𝐽))
54533adant3 1074 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → 𝑓 ∈ (II Cn 𝐽))
5510, 1, 9, 30pi1eluni 22650 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ( 𝐵 ↔ ( ∈ (II Cn 𝐽) ∧ (‘0) = (𝐹‘0) ∧ (‘1) = (𝐹‘0))))
5655adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵) → ( 𝐵 ↔ ( ∈ (II Cn 𝐽) ∧ (‘0) = (𝐹‘0) ∧ (‘1) = (𝐹‘0))))
5756biimp3a 1424 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → ( ∈ (II Cn 𝐽) ∧ (‘0) = (𝐹‘0) ∧ (‘1) = (𝐹‘0)))
5857simp1d 1066 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → ∈ (II Cn 𝐽))
5954, 58pco0 22622 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))‘0) = (𝑓‘0))
6052simp2d 1067 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵) → (𝑓‘0) = (𝐹‘0))
61603adant3 1074 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → (𝑓‘0) = (𝐹‘0))
6259, 61eqtrd 2644 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))‘0) = (𝐹‘0))
6352simp3d 1068 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵) → (𝑓‘1) = (𝐹‘0))
64633adant3 1074 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → (𝑓‘1) = (𝐹‘0))
6557simp2d 1067 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → (‘0) = (𝐹‘0))
6664, 65eqtr4d 2647 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → (𝑓‘1) = (‘0))
6754, 58, 66pcocn 22625 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽))
6843ad2ant1 1075 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → 𝐹 ∈ (II Cn 𝐽))
6967, 68pco0 22622 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → (((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹)‘0) = ((𝑓(*𝑝𝐽))‘0))
70283ad2ant1 1075 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘1) = (𝐹‘0))
7162, 69, 703eqtr4rd 2655 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘1) = (((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹)‘0))
72253ad2ant1 1075 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → 𝐼 ∈ (II Cn 𝐽))
7350, 72erref 7649 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → 𝐼( ≃ph𝐽)𝐼)
7457simp3d 1068 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → (‘1) = (𝐹‘0))
75 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2)))) = (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2))))
7654, 58, 68, 66, 74, 75pcoass 22632 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹)( ≃ph𝐽)(𝑓(*𝑝𝐽)((*𝑝𝐽)𝐹)))
7758, 68pco0 22622 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → (((*𝑝𝐽)𝐹)‘0) = (‘0))
7866, 77eqtr4d 2647 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → (𝑓‘1) = (((*𝑝𝐽)𝐹)‘0))
7950, 54erref 7649 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → 𝑓( ≃ph𝐽)𝑓)
8068, 72pco1 22623 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (𝐼‘1))
8165, 77, 703eqtr4rd 2655 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘1) = (((*𝑝𝐽)𝐹)‘0))
8280, 81eqtrd 2644 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)‘1) = (((*𝑝𝐽)𝐹)‘0))
83 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 ((0[,]1) × {(𝐹‘0)}) = ((0[,]1) × {(𝐹‘0)})
8422, 83pcorev2 22636 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
8568, 84syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → (𝐹(*𝑝𝐽)𝐼)( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
8658, 68, 74pcocn 22625 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓 𝐵 𝐵) → ((*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
8750, 86erref 7649 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → ((*𝑝𝐽)𝐹)( ≃ph𝐽)((*𝑝𝐽)𝐹))
8882, 85, 87pcohtpy 22628 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)(((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)((*𝑝𝐽)𝐹)))
8977, 65eqtrd 2644 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → (((*𝑝𝐽)𝐹)‘0) = (𝐹‘0))
9083pcopt 22630 . . . . . . . . . . . . . . . . . . . . 21 ((((*𝑝𝐽)𝐹) ∈ (II Cn 𝐽) ∧ (((*𝑝𝐽)𝐹)‘0) = (𝐹‘0)) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)((*𝑝𝐽)𝐹))
9186, 89, 90syl2anc 691 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵 𝐵) → (((0[,]1) × {(𝐹‘0)})(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)((*𝑝𝐽)𝐹))
9250, 88, 91ertrd 7645 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)((*𝑝𝐽)𝐹))
93263ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘0) = (𝐹‘1))
9493eqcomd 2616 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵 𝐵) → (𝐹‘1) = (𝐼‘0))
9568, 72, 86, 94, 81, 75pcoass 22632 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → ((𝐹(*𝑝𝐽)𝐼)(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
9650, 92, 95ertr3d 7647 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → ((*𝑝𝐽)𝐹)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
9778, 79, 96pcohtpy 22628 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)(𝑓(*𝑝𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))))
9872, 86, 81pcocn 22625 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
9972, 86pco0 22622 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0) = (𝐼‘0))
10099, 93eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
101100eqcomd 2616 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 𝐵 𝐵) → (𝐹‘1) = ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0))
10254, 68, 98, 64, 101, 75pcoass 22632 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))( ≃ph𝐽)(𝑓(*𝑝𝐽)(𝐹(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))))
10350, 97, 102ertr4d 7648 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)((*𝑝𝐽)𝐹))( ≃ph𝐽)((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
10450, 76, 103ertrd 7645 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹)( ≃ph𝐽)((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
10571, 73, 104pcohtpy 22628 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹))( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))))
1064adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵) → 𝐹 ∈ (II Cn 𝐽))
10753, 106, 63pcocn 22625 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → (𝑓(*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
1081073adant3 1074 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)𝐹) ∈ (II Cn 𝐽))
10953, 106pco0 22622 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵) → ((𝑓(*𝑝𝐽)𝐹)‘0) = (𝑓‘0))
11028adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝐵) → (𝐼‘1) = (𝐹‘0))
11160, 109, 1103eqtr4rd 2655 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → (𝐼‘1) = ((𝑓(*𝑝𝐽)𝐹)‘0))
1121113adant3 1074 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (𝐼‘1) = ((𝑓(*𝑝𝐽)𝐹)‘0))
11354, 68pco1 22623 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
114113, 100eqtr4d 2647 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽)𝐹)‘1) = ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0))
11572, 108, 98, 112, 114, 75pcoass 22632 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))( ≃ph𝐽)(𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽)𝐹)(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))))
11650, 105, 115ertr4d 7648 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹))( ≃ph𝐽)((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))))
11750, 116erthi 7680 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → [(𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))]( ≃ph𝐽))
11813ad2ant1 1075 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
11954, 58pco1 22623 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))‘1) = (‘1))
120119, 74eqtrd 2644 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽))‘1) = (𝐹‘0))
12110, 1, 9, 30pi1eluni 22650 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑓(*𝑝𝐽)) ∈ 𝐵 ↔ ((𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ ((𝑓(*𝑝𝐽))‘0) = (𝐹‘0) ∧ ((𝑓(*𝑝𝐽))‘1) = (𝐹‘0))))
1221213ad2ant1 1075 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝑓(*𝑝𝐽)) ∈ 𝐵 ↔ ((𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ ((𝑓(*𝑝𝐽))‘0) = (𝐹‘0) ∧ ((𝑓(*𝑝𝐽))‘1) = (𝐹‘0))))
12367, 62, 120, 122mpbir3and 1238 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝑓(*𝑝𝐽)) ∈ 𝐵)
12410, 16, 20, 21, 118, 68, 72, 94, 70, 123pi1xfrval 22662 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)((𝑓(*𝑝𝐽))(*𝑝𝐽)𝐹))]( ≃ph𝐽))
125 eqid 2610 . . . . . . . . . . . . 13 (Base‘𝑄) = (Base‘𝑄)
126153ad2ant1 1075 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐹‘1) ∈ 𝑋)
127 eqid 2610 . . . . . . . . . . . . 13 (+g𝑄) = (+g𝑄)
12825adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → 𝐼 ∈ (II Cn 𝐽))
129128, 107, 111pcocn 22625 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵) → (𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
1301293adant3 1074 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽))
131128, 107pco0 22622 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘0) = (𝐼‘0))
13226adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → (𝐼‘0) = (𝐹‘1))
133131, 132eqtrd 2644 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
1341333adant3 1074 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘0) = (𝐹‘1))
135128, 107pco1 22623 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘1) = ((𝑓(*𝑝𝐽)𝐹)‘1))
13653, 106pco1 22623 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝐵) → ((𝑓(*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
137135, 136eqtrd 2644 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
1381373adant3 1074 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
139 eqidd 2611 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (Base‘𝑄) = (Base‘𝑄))
14016, 118, 126, 139pi1eluni 22650 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
141130, 134, 138, 140mpbir3and 1238 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹)) ∈ (Base‘𝑄))
14272, 86pco1 22623 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘1) = (((*𝑝𝐽)𝐹)‘1))
14358, 68pco1 22623 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝐵 𝐵) → (((*𝑝𝐽)𝐹)‘1) = (𝐹‘1))
144142, 143eqtrd 2644 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘1) = (𝐹‘1))
14516, 118, 126, 139pi1eluni 22650 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵 𝐵) → ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)) ∈ (Base‘𝑄) ↔ ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)) ∈ (II Cn 𝐽) ∧ ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘0) = (𝐹‘1) ∧ ((𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))‘1) = (𝐹‘1))))
14698, 100, 144, 145mpbir3and 1238 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)) ∈ (Base‘𝑄))
14716, 125, 118, 126, 127, 141, 146pi1addval 22656 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → ([(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽)(+g𝑄)[(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽)) = [((𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))(*𝑝𝐽)(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹)))]( ≃ph𝐽))
148117, 124, 1473eqtr4d 2654 . . . . . . . . . . 11 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = ([(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽)(+g𝑄)[(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽)))
14993ad2ant1 1075 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → (𝐹‘0) ∈ 𝑋)
150 eqid 2610 . . . . . . . . . . . . 13 (+g𝑃) = (+g𝑃)
151 simp2 1055 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → 𝑓 𝐵)
152 simp3 1056 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵 𝐵) → 𝐵)
15310, 20, 118, 149, 150, 151, 152pi1addval 22656 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = [(𝑓(*𝑝𝐽))]( ≃ph𝐽))
154153fveq2d 6107 . . . . . . . . . . 11 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)))
1551adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
15627adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵) → (𝐹‘1) = (𝐼‘0))
157 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝐵) → 𝑓 𝐵)
15810, 16, 20, 21, 155, 106, 128, 156, 110, 157pi1xfrval 22662 . . . . . . . . . . . . 13 ((𝜑𝑓 𝐵) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽))
1591583adant3 1074 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽))
16010, 16, 20, 21, 118, 68, 72, 94, 70, 152pi1xfrval 22662 . . . . . . . . . . . 12 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘[]( ≃ph𝐽)) = [(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽))
161159, 160oveq12d 6567 . . . . . . . . . . 11 ((𝜑𝑓 𝐵 𝐵) → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ([(𝐼(*𝑝𝐽)(𝑓(*𝑝𝐽)𝐹))]( ≃ph𝐽)(+g𝑄)[(𝐼(*𝑝𝐽)((*𝑝𝐽)𝐹))]( ≃ph𝐽)))
162148, 154, 1613eqtr4d 2654 . . . . . . . . . 10 ((𝜑𝑓 𝐵 𝐵) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))))
1631623expa 1257 . . . . . . . . 9 (((𝜑𝑓 𝐵) ∧ 𝐵) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))))
16434, 48, 163ectocld 7701 . . . . . . . 8 (((𝜑𝑓 𝐵) ∧ 𝑧 ∈ ( 𝐵 / ( ≃ph𝐽))) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
16543, 164syldan 486 . . . . . . 7 (((𝜑𝑓 𝐵) ∧ 𝑧𝐵) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
166165ralrimiva 2949 . . . . . 6 ((𝜑𝑓 𝐵) → ∀𝑧𝐵 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
16734, 40, 166ectocld 7701 . . . . 5 ((𝜑𝑦 ∈ ( 𝐵 / ( ≃ph𝐽))) → ∀𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
16833, 167syldan 486 . . . 4 ((𝜑𝑦𝐵) → ∀𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
169168ralrimiva 2949 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
17029, 169jca 553 . 2 (𝜑 → (𝐺:𝐵⟶(Base‘𝑄) ∧ ∀𝑦𝐵𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
17120, 125, 150, 127isghm 17483 . 2 (𝐺 ∈ (𝑃 GrpHom 𝑄) ↔ ((𝑃 ∈ Grp ∧ 𝑄 ∈ Grp) ∧ (𝐺:𝐵⟶(Base‘𝑄) ∧ ∀𝑦𝐵𝑧𝐵 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))))
17219, 170, 171sylanbrc 695 1 (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  ifcif 4036  {csn 4125  cop 4131   cuni 4372   class class class wbr 4583  cmpt 4643   × cxp 5036  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549   Er wer 7626  [cec 7627   / cqs 7628  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  4c4 10949  [,]cicc 12049  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245   GrpHom cghm 17480  TopOnctopon 20518   Cn ccn 20838  IIcii 22486  phcphtpc 22576  *𝑝cpco 22608   π1 cpi1 22611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-qus 15992  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-mulg 17364  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-ii 22488  df-htpy 22577  df-phtpy 22578  df-phtpc 22599  df-pco 22613  df-om1 22614  df-pi1 22616
This theorem is referenced by:  pi1xfrcnv  22665  pi1xfrgim  22666
  Copyright terms: Public domain W3C validator