Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyhtpy Structured version   Visualization version   GIF version

Theorem phtpyhtpy 22589
 Description: A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2 (𝜑𝐹 ∈ (II Cn 𝐽))
isphtpy.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
phtpyhtpy (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))

Proof of Theorem phtpyhtpy
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isphtpy.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
2 isphtpy.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2isphtpy 22588 . . 3 (𝜑 → ( ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ ( ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1)))))
4 simpl 472 . . 3 (( ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))) → ∈ (𝐹(II Htpy 𝐽)𝐺))
53, 4syl6bi 242 . 2 (𝜑 → ( ∈ (𝐹(PHtpy‘𝐽)𝐺) → ∈ (𝐹(II Htpy 𝐽)𝐺)))
65ssrdv 3574 1 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ⊆ wss 3540  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  [,]cicc 12049   Cn ccn 20838  IIcii 22486   Htpy chtpy 22574  PHtpycphtpy 22575 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-top 20521  df-topon 20523  df-cn 20841  df-phtpy 22578 This theorem is referenced by:  phtpycn  22590  phtpy01  22592  phtpycom  22595  phtpyco2  22597  phtpycc  22598  pcohtpylem  22627  txsconlem  30476  cvmliftphtlem  30553
 Copyright terms: Public domain W3C validator