MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyco2 Structured version   Visualization version   GIF version

Theorem phtpyco2 22597
Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
phtpyco2.f (𝜑𝐹 ∈ (II Cn 𝐽))
phtpyco2.g (𝜑𝐺 ∈ (II Cn 𝐽))
phtpyco2.p (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
phtpyco2.h (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Assertion
Ref Expression
phtpyco2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)))

Proof of Theorem phtpyco2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 phtpyco2.f . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
2 phtpyco2.p . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
3 cnco 20880 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐹) ∈ (II Cn 𝐾))
41, 2, 3syl2anc 691 . 2 (𝜑 → (𝑃𝐹) ∈ (II Cn 𝐾))
5 phtpyco2.g . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cnco 20880 . . 3 ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐺) ∈ (II Cn 𝐾))
75, 2, 6syl2anc 691 . 2 (𝜑 → (𝑃𝐺) ∈ (II Cn 𝐾))
81, 5phtpyhtpy 22589 . . . 4 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
9 phtpyco2.h . . . 4 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
108, 9sseldd 3569 . . 3 (𝜑𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺))
111, 5, 2, 10htpyco2 22586 . 2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(II Htpy 𝐾)(𝑃𝐺)))
121, 5, 9phtpyi 22591 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))
1312simpld 474 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0))
1413fveq2d 6107 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐹‘0)))
15 0elunit 12161 . . . . . 6 0 ∈ (0[,]1)
16 simpr 476 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
17 opelxpi 5072 . . . . . 6 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
1815, 16, 17sylancr 694 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
19 iitopon 22490 . . . . . . . . 9 II ∈ (TopOn‘(0[,]1))
20 txtopon 21204 . . . . . . . . 9 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
2119, 19, 20mp2an 704 . . . . . . . 8 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
2221a1i 11 . . . . . . 7 (𝜑 → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
23 cntop2 20855 . . . . . . . . 9 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
241, 23syl 17 . . . . . . . 8 (𝜑𝐽 ∈ Top)
25 eqid 2610 . . . . . . . . 9 𝐽 = 𝐽
2625toptopon 20548 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2724, 26sylib 207 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
281, 5phtpycn 22590 . . . . . . . 8 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ ((II ×t II) Cn 𝐽))
2928, 9sseldd 3569 . . . . . . 7 (𝜑𝐻 ∈ ((II ×t II) Cn 𝐽))
30 cnf2 20863 . . . . . . 7 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐻 ∈ ((II ×t II) Cn 𝐽)) → 𝐻:((0[,]1) × (0[,]1))⟶ 𝐽)
3122, 27, 29, 30syl3anc 1318 . . . . . 6 (𝜑𝐻:((0[,]1) × (0[,]1))⟶ 𝐽)
32 fvco3 6185 . . . . . 6 ((𝐻:((0[,]1) × (0[,]1))⟶ 𝐽 ∧ ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝑃𝐻)‘⟨0, 𝑠⟩) = (𝑃‘(𝐻‘⟨0, 𝑠⟩)))
3331, 32sylan 487 . . . . 5 ((𝜑 ∧ ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝑃𝐻)‘⟨0, 𝑠⟩) = (𝑃‘(𝐻‘⟨0, 𝑠⟩)))
3418, 33syldan 486 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐻)‘⟨0, 𝑠⟩) = (𝑃‘(𝐻‘⟨0, 𝑠⟩)))
35 df-ov 6552 . . . 4 (0(𝑃𝐻)𝑠) = ((𝑃𝐻)‘⟨0, 𝑠⟩)
36 df-ov 6552 . . . . 5 (0𝐻𝑠) = (𝐻‘⟨0, 𝑠⟩)
3736fveq2i 6106 . . . 4 (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐻‘⟨0, 𝑠⟩))
3834, 35, 373eqtr4g 2669 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0(𝑃𝐻)𝑠) = (𝑃‘(0𝐻𝑠)))
39 iiuni 22492 . . . . . . 7 (0[,]1) = II
4039, 25cnf 20860 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
411, 40syl 17 . . . . 5 (𝜑𝐹:(0[,]1)⟶ 𝐽)
4241adantr 480 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝐹:(0[,]1)⟶ 𝐽)
43 fvco3 6185 . . . 4 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 0 ∈ (0[,]1)) → ((𝑃𝐹)‘0) = (𝑃‘(𝐹‘0)))
4442, 15, 43sylancl 693 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐹)‘0) = (𝑃‘(𝐹‘0)))
4514, 38, 443eqtr4d 2654 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0(𝑃𝐻)𝑠) = ((𝑃𝐹)‘0))
4612simprd 478 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1))
4746fveq2d 6107 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐹‘1)))
48 1elunit 12162 . . . . . 6 1 ∈ (0[,]1)
49 opelxpi 5072 . . . . . 6 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
5048, 16, 49sylancr 694 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
51 fvco3 6185 . . . . . 6 ((𝐻:((0[,]1) × (0[,]1))⟶ 𝐽 ∧ ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝑃𝐻)‘⟨1, 𝑠⟩) = (𝑃‘(𝐻‘⟨1, 𝑠⟩)))
5231, 51sylan 487 . . . . 5 ((𝜑 ∧ ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝑃𝐻)‘⟨1, 𝑠⟩) = (𝑃‘(𝐻‘⟨1, 𝑠⟩)))
5350, 52syldan 486 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐻)‘⟨1, 𝑠⟩) = (𝑃‘(𝐻‘⟨1, 𝑠⟩)))
54 df-ov 6552 . . . 4 (1(𝑃𝐻)𝑠) = ((𝑃𝐻)‘⟨1, 𝑠⟩)
55 df-ov 6552 . . . . 5 (1𝐻𝑠) = (𝐻‘⟨1, 𝑠⟩)
5655fveq2i 6106 . . . 4 (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐻‘⟨1, 𝑠⟩))
5753, 54, 563eqtr4g 2669 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1(𝑃𝐻)𝑠) = (𝑃‘(1𝐻𝑠)))
58 fvco3 6185 . . . 4 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 1 ∈ (0[,]1)) → ((𝑃𝐹)‘1) = (𝑃‘(𝐹‘1)))
5942, 48, 58sylancl 693 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐹)‘1) = (𝑃‘(𝐹‘1)))
6047, 57, 593eqtr4d 2654 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1(𝑃𝐻)𝑠) = ((𝑃𝐹)‘1))
614, 7, 11, 45, 60isphtpyd 22593 1 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cop 4131   cuni 4372   × cxp 5036  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  [,]cicc 12049  Topctop 20517  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173  IIcii 22486   Htpy chtpy 22574  PHtpycphtpy 22575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-tx 21175  df-ii 22488  df-htpy 22577  df-phtpy 22578
This theorem is referenced by:  phtpcco2  22607
  Copyright terms: Public domain W3C validator