Step | Hyp | Ref
| Expression |
1 | | 0ss 3924 |
. . . . . . . 8
⊢ ∅
⊆ 𝐵 |
2 | | sspsstr 3674 |
. . . . . . . 8
⊢ ((∅
⊆ 𝐵 ∧ 𝐵 ⊊ 𝐴) → ∅ ⊊ 𝐴) |
3 | 1, 2 | mpan 702 |
. . . . . . 7
⊢ (𝐵 ⊊ 𝐴 → ∅ ⊊ 𝐴) |
4 | | 0pss 3965 |
. . . . . . . 8
⊢ (∅
⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
5 | | df-ne 2782 |
. . . . . . . 8
⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) |
6 | 4, 5 | bitri 263 |
. . . . . . 7
⊢ (∅
⊊ 𝐴 ↔ ¬
𝐴 =
∅) |
7 | 3, 6 | sylib 207 |
. . . . . 6
⊢ (𝐵 ⊊ 𝐴 → ¬ 𝐴 = ∅) |
8 | | nn0suc 6982 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
9 | 8 | orcanai 950 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ ¬
𝐴 = ∅) →
∃𝑥 ∈ ω
𝐴 = suc 𝑥) |
10 | 7, 9 | sylan2 490 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) |
11 | | pssnel 3991 |
. . . . . . . . . 10
⊢ (𝐵 ⊊ suc 𝑥 → ∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦 ∈ 𝐵)) |
12 | | pssss 3664 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ⊊ suc 𝑥 → 𝐵 ⊆ suc 𝑥) |
13 | | ssdif 3707 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ⊆ suc 𝑥 → (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})) |
14 | | disjsn 4192 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦 ∈ 𝐵) |
15 | | disj3 3973 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∩ {𝑦}) = ∅ ↔ 𝐵 = (𝐵 ∖ {𝑦})) |
16 | 14, 15 | bitr3i 265 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑦 ∈ 𝐵 ↔ 𝐵 = (𝐵 ∖ {𝑦})) |
17 | | sseq1 3589 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 = (𝐵 ∖ {𝑦}) → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦}))) |
18 | 16, 17 | sylbi 206 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑦 ∈ 𝐵 → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦}))) |
19 | 13, 18 | syl5ibr 235 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑦 ∈ 𝐵 → (𝐵 ⊆ suc 𝑥 → 𝐵 ⊆ (suc 𝑥 ∖ {𝑦}))) |
20 | | vex 3176 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑥 ∈ V |
21 | 20 | sucex 6903 |
. . . . . . . . . . . . . . . . . . 19
⊢ suc 𝑥 ∈ V |
22 | | difss 3699 |
. . . . . . . . . . . . . . . . . . 19
⊢ (suc
𝑥 ∖ {𝑦}) ⊆ suc 𝑥 |
23 | 21, 22 | ssexi 4731 |
. . . . . . . . . . . . . . . . . 18
⊢ (suc
𝑥 ∖ {𝑦}) ∈ V |
24 | | ssdomg 7887 |
. . . . . . . . . . . . . . . . . 18
⊢ ((suc
𝑥 ∖ {𝑦}) ∈ V → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))) |
25 | 23, 24 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦})) |
26 | 12, 19, 25 | syl56 35 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑦 ∈ 𝐵 → (𝐵 ⊊ suc 𝑥 → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))) |
27 | 26 | imp 444 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑦 ∈ 𝐵 ∧ 𝐵 ⊊ suc 𝑥) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦})) |
28 | | vex 3176 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V |
29 | 20, 28 | phplem3 8026 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → 𝑥 ≈ (suc 𝑥 ∖ {𝑦})) |
30 | 29 | ensymd 7893 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (suc 𝑥 ∖ {𝑦}) ≈ 𝑥) |
31 | | domentr 7901 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥) → 𝐵 ≼ 𝑥) |
32 | 27, 30, 31 | syl2an 493 |
. . . . . . . . . . . . . 14
⊢ (((¬
𝑦 ∈ 𝐵 ∧ 𝐵 ⊊ suc 𝑥) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵 ≼ 𝑥) |
33 | 32 | exp43 638 |
. . . . . . . . . . . . 13
⊢ (¬
𝑦 ∈ 𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → (𝑦 ∈ suc 𝑥 → 𝐵 ≼ 𝑥)))) |
34 | 33 | com4r 92 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ suc 𝑥 → (¬ 𝑦 ∈ 𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵 ≼ 𝑥)))) |
35 | 34 | imp 444 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦 ∈ 𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵 ≼ 𝑥))) |
36 | 35 | exlimiv 1845 |
. . . . . . . . . 10
⊢
(∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦 ∈ 𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵 ≼ 𝑥))) |
37 | 11, 36 | mpcom 37 |
. . . . . . . . 9
⊢ (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵 ≼ 𝑥)) |
38 | | endomtr 7900 |
. . . . . . . . . . . 12
⊢ ((suc
𝑥 ≈ 𝐵 ∧ 𝐵 ≼ 𝑥) → suc 𝑥 ≼ 𝑥) |
39 | | sssucid 5719 |
. . . . . . . . . . . . 13
⊢ 𝑥 ⊆ suc 𝑥 |
40 | | ssdomg 7887 |
. . . . . . . . . . . . 13
⊢ (suc
𝑥 ∈ V → (𝑥 ⊆ suc 𝑥 → 𝑥 ≼ suc 𝑥)) |
41 | 21, 39, 40 | mp2 9 |
. . . . . . . . . . . 12
⊢ 𝑥 ≼ suc 𝑥 |
42 | | sbth 7965 |
. . . . . . . . . . . 12
⊢ ((suc
𝑥 ≼ 𝑥 ∧ 𝑥 ≼ suc 𝑥) → suc 𝑥 ≈ 𝑥) |
43 | 38, 41, 42 | sylancl 693 |
. . . . . . . . . . 11
⊢ ((suc
𝑥 ≈ 𝐵 ∧ 𝐵 ≼ 𝑥) → suc 𝑥 ≈ 𝑥) |
44 | 43 | expcom 450 |
. . . . . . . . . 10
⊢ (𝐵 ≼ 𝑥 → (suc 𝑥 ≈ 𝐵 → suc 𝑥 ≈ 𝑥)) |
45 | | peano2b 6973 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ω ↔ suc 𝑥 ∈
ω) |
46 | | nnord 6965 |
. . . . . . . . . . . . 13
⊢ (suc
𝑥 ∈ ω → Ord
suc 𝑥) |
47 | 45, 46 | sylbi 206 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ω → Ord suc
𝑥) |
48 | 20 | sucid 5721 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ suc 𝑥 |
49 | | nordeq 5659 |
. . . . . . . . . . . 12
⊢ ((Ord suc
𝑥 ∧ 𝑥 ∈ suc 𝑥) → suc 𝑥 ≠ 𝑥) |
50 | 47, 48, 49 | sylancl 693 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ω → suc 𝑥 ≠ 𝑥) |
51 | | nneneq 8028 |
. . . . . . . . . . . . . 14
⊢ ((suc
𝑥 ∈ ω ∧
𝑥 ∈ ω) →
(suc 𝑥 ≈ 𝑥 ↔ suc 𝑥 = 𝑥)) |
52 | 45, 51 | sylanb 488 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc
𝑥 ≈ 𝑥 ↔ suc 𝑥 = 𝑥)) |
53 | 52 | anidms 675 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ω → (suc
𝑥 ≈ 𝑥 ↔ suc 𝑥 = 𝑥)) |
54 | 53 | necon3bbid 2819 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ω → (¬
suc 𝑥 ≈ 𝑥 ↔ suc 𝑥 ≠ 𝑥)) |
55 | 50, 54 | mpbird 246 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ω → ¬ suc
𝑥 ≈ 𝑥) |
56 | 44, 55 | nsyli 154 |
. . . . . . . . 9
⊢ (𝐵 ≼ 𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥 ≈ 𝐵)) |
57 | 37, 56 | syli 38 |
. . . . . . . 8
⊢ (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥 ≈ 𝐵)) |
58 | 57 | com12 32 |
. . . . . . 7
⊢ (𝑥 ∈ ω → (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥 ≈ 𝐵)) |
59 | | psseq2 3657 |
. . . . . . . 8
⊢ (𝐴 = suc 𝑥 → (𝐵 ⊊ 𝐴 ↔ 𝐵 ⊊ suc 𝑥)) |
60 | | breq1 4586 |
. . . . . . . . 9
⊢ (𝐴 = suc 𝑥 → (𝐴 ≈ 𝐵 ↔ suc 𝑥 ≈ 𝐵)) |
61 | 60 | notbid 307 |
. . . . . . . 8
⊢ (𝐴 = suc 𝑥 → (¬ 𝐴 ≈ 𝐵 ↔ ¬ suc 𝑥 ≈ 𝐵)) |
62 | 59, 61 | imbi12d 333 |
. . . . . . 7
⊢ (𝐴 = suc 𝑥 → ((𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵) ↔ (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥 ≈ 𝐵))) |
63 | 58, 62 | syl5ibrcom 236 |
. . . . . 6
⊢ (𝑥 ∈ ω → (𝐴 = suc 𝑥 → (𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵))) |
64 | 63 | rexlimiv 3009 |
. . . . 5
⊢
(∃𝑥 ∈
ω 𝐴 = suc 𝑥 → (𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵)) |
65 | 10, 64 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → (𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵)) |
66 | 65 | ex 449 |
. . 3
⊢ (𝐴 ∈ ω → (𝐵 ⊊ 𝐴 → (𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵))) |
67 | 66 | pm2.43d 51 |
. 2
⊢ (𝐴 ∈ ω → (𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵)) |
68 | 67 | imp 444 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) |