MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlsrng Structured version   Visualization version   GIF version

Theorem phlsrng 19795
Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
phlsrng (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)

Proof of Theorem phlsrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 phlsrng.f . . 3 𝐹 = (Scalar‘𝑊)
3 eqid 2610 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
4 eqid 2610 . . 3 (0g𝑊) = (0g𝑊)
5 eqid 2610 . . 3 (*𝑟𝐹) = (*𝑟𝐹)
6 eqid 2610 . . 3 (0g𝐹) = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 19792 . 2 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥(·𝑖𝑊)𝑥) = (0g𝐹) → 𝑥 = (0g𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟𝐹)‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))))
87simp2bi 1070 1 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cmpt 4643  cfv 5804  (class class class)co 6549  Basecbs 15695  *𝑟cstv 15770  Scalarcsca 15771  ·𝑖cip 15773  0gc0g 15923  *-Ringcsr 18667   LMHom clmhm 18840  LVecclvec 18923  ringLModcrglmod 18990  PreHilcphl 19788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-iota 5768  df-fv 5812  df-ov 6552  df-phl 19790
This theorem is referenced by:  iporthcom  19799  ip0r  19801  ipdi  19804  ip2di  19805  ipassr  19810  ipassr2  19811  cphcjcl  22791
  Copyright terms: Public domain W3C validator