MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac Structured version   Visualization version   GIF version

Theorem pgpfac 18306
Description: Full factorization of a finite abelian p-group, by iterating pgpfac1 18302. There is a direct product decomposition of any abelian group of prime-power order into cyclic subgroups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
pgpfac (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
Distinct variable groups:   𝐶,𝑠   𝑠,𝑟,𝐺   𝐵,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑠,𝑟)

Proof of Theorem pgpfac
Dummy variables 𝑡 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 18021 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 pgpfac.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 17419 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
51, 2, 43syl 18 . 2 (𝜑𝐵 ∈ (SubGrp‘𝐺))
6 pgpfac.f . . 3 (𝜑𝐵 ∈ Fin)
7 eleq1 2676 . . . . . 6 (𝑡 = 𝑢 → (𝑡 ∈ (SubGrp‘𝐺) ↔ 𝑢 ∈ (SubGrp‘𝐺)))
8 eqeq2 2621 . . . . . . . 8 (𝑡 = 𝑢 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑢))
98anbi2d 736 . . . . . . 7 (𝑡 = 𝑢 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))
109rexbidv 3034 . . . . . 6 (𝑡 = 𝑢 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))
117, 10imbi12d 333 . . . . 5 (𝑡 = 𝑢 → ((𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))
1211imbi2d 329 . . . 4 (𝑡 = 𝑢 → ((𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
13 eleq1 2676 . . . . . 6 (𝑡 = 𝐵 → (𝑡 ∈ (SubGrp‘𝐺) ↔ 𝐵 ∈ (SubGrp‘𝐺)))
14 eqeq2 2621 . . . . . . . 8 (𝑡 = 𝐵 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝐵))
1514anbi2d 736 . . . . . . 7 (𝑡 = 𝐵 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))
1615rexbidv 3034 . . . . . 6 (𝑡 = 𝐵 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))
1713, 16imbi12d 333 . . . . 5 (𝑡 = 𝐵 → ((𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))))
1817imbi2d 329 . . . 4 (𝑡 = 𝐵 → ((𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))))
19 bi2.04 375 . . . . . . . . 9 ((𝑡𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝑡 ∈ (SubGrp‘𝐺) → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))
2019imbi2i 325 . . . . . . . 8 ((𝜑 → (𝑡𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
21 bi2.04 375 . . . . . . . 8 ((𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
22 bi2.04 375 . . . . . . . 8 ((𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
2320, 21, 223bitr4i 291 . . . . . . 7 ((𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
2423albii 1737 . . . . . 6 (∀𝑡(𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ ∀𝑡(𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
25 df-ral 2901 . . . . . 6 (∀𝑡 ∈ (SubGrp‘𝐺)(𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ ∀𝑡(𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
26 r19.21v 2943 . . . . . 6 (∀𝑡 ∈ (SubGrp‘𝐺)(𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))
2724, 25, 263bitr2i 287 . . . . 5 (∀𝑡(𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))
28 pgpfac.c . . . . . . . . 9 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
291adantr 480 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝐺 ∈ Abel)
30 pgpfac.p . . . . . . . . . 10 (𝜑𝑃 pGrp 𝐺)
3130adantr 480 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝑃 pGrp 𝐺)
326adantr 480 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝐵 ∈ Fin)
33 simprr 792 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝑢 ∈ (SubGrp‘𝐺))
34 simprl 790 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
35 psseq1 3656 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (𝑡𝑢𝑥𝑢))
36 eqeq2 2621 . . . . . . . . . . . . . 14 (𝑡 = 𝑥 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑥))
3736anbi2d 736 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
3837rexbidv 3034 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
3935, 38imbi12d 333 . . . . . . . . . . 11 (𝑡 = 𝑥 → ((𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑥𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥))))
4039cbvralv 3147 . . . . . . . . . 10 (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ ∀𝑥 ∈ (SubGrp‘𝐺)(𝑥𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
4134, 40sylib 207 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∀𝑥 ∈ (SubGrp‘𝐺)(𝑥𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
423, 28, 29, 31, 32, 33, 41pgpfaclem3 18305 . . . . . . . 8 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))
4342exp32 629 . . . . . . 7 (𝜑 → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))
4443a1i 11 . . . . . 6 (𝑢 ∈ Fin → (𝜑 → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
4544a2d 29 . . . . 5 (𝑢 ∈ Fin → ((𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) → (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
4627, 45syl5bi 231 . . . 4 (𝑢 ∈ Fin → (∀𝑡(𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) → (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
4712, 18, 46findcard3 8088 . . 3 (𝐵 ∈ Fin → (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))))
486, 47mpcom 37 . 2 (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))
495, 48mpd 15 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  cin 3539  wpss 3541   class class class wbr 4583  dom cdm 5038  ran crn 5039  cfv 5804  (class class class)co 6549  Fincfn 7841  Word cword 13146  Basecbs 15695  s cress 15696  Grpcgrp 17245  SubGrpcsubg 17411   pGrp cpgp 17769  Abelcabl 18017  CycGrpccyg 18102   DProd cdprd 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-rpss 6835  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-eqg 17416  df-ghm 17481  df-gim 17524  df-ga 17546  df-cntz 17573  df-oppg 17599  df-od 17771  df-gex 17772  df-pgp 17773  df-lsm 17874  df-pj1 17875  df-cmn 18018  df-abl 18019  df-cyg 18103  df-dprd 18217
This theorem is referenced by:  ablfaclem3  18309
  Copyright terms: Public domain W3C validator