Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pfxfvlsw | Structured version Visualization version GIF version |
Description: The last symbol in a (not empty) prefix of a word. Could replace swrd0fvlsw 13295. (Contributed by AV, 3-May-2020.) |
Ref | Expression |
---|---|
pfxfvlsw | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(#‘𝑊))) → ( lastS ‘(𝑊 prefix 𝐿)) = (𝑊‘(𝐿 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pfxcl 40249 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) ∈ Word 𝑉) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(#‘𝑊))) → (𝑊 prefix 𝐿) ∈ Word 𝑉) |
3 | lsw 13204 | . . 3 ⊢ ((𝑊 prefix 𝐿) ∈ Word 𝑉 → ( lastS ‘(𝑊 prefix 𝐿)) = ((𝑊 prefix 𝐿)‘((#‘(𝑊 prefix 𝐿)) − 1))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(#‘𝑊))) → ( lastS ‘(𝑊 prefix 𝐿)) = ((𝑊 prefix 𝐿)‘((#‘(𝑊 prefix 𝐿)) − 1))) |
5 | 1eluzge0 11608 | . . . . . . 7 ⊢ 1 ∈ (ℤ≥‘0) | |
6 | fzss1 12251 | . . . . . . 7 ⊢ (1 ∈ (ℤ≥‘0) → (1...(#‘𝑊)) ⊆ (0...(#‘𝑊))) | |
7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ (1...(#‘𝑊)) ⊆ (0...(#‘𝑊)) |
8 | 7 | sseli 3564 | . . . . 5 ⊢ (𝐿 ∈ (1...(#‘𝑊)) → 𝐿 ∈ (0...(#‘𝑊))) |
9 | pfxlen 40254 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(#‘𝑊))) → (#‘(𝑊 prefix 𝐿)) = 𝐿) | |
10 | 8, 9 | sylan2 490 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(#‘𝑊))) → (#‘(𝑊 prefix 𝐿)) = 𝐿) |
11 | 10 | oveq1d 6564 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(#‘𝑊))) → ((#‘(𝑊 prefix 𝐿)) − 1) = (𝐿 − 1)) |
12 | 11 | fveq2d 6107 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(#‘𝑊))) → ((𝑊 prefix 𝐿)‘((#‘(𝑊 prefix 𝐿)) − 1)) = ((𝑊 prefix 𝐿)‘(𝐿 − 1))) |
13 | simpl 472 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(#‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
14 | 8 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(#‘𝑊))) → 𝐿 ∈ (0...(#‘𝑊))) |
15 | elfznn 12241 | . . . . 5 ⊢ (𝐿 ∈ (1...(#‘𝑊)) → 𝐿 ∈ ℕ) | |
16 | fzo0end 12426 | . . . . 5 ⊢ (𝐿 ∈ ℕ → (𝐿 − 1) ∈ (0..^𝐿)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝐿 ∈ (1...(#‘𝑊)) → (𝐿 − 1) ∈ (0..^𝐿)) |
18 | 17 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(#‘𝑊))) → (𝐿 − 1) ∈ (0..^𝐿)) |
19 | pfxfv 40262 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(#‘𝑊)) ∧ (𝐿 − 1) ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘(𝐿 − 1)) = (𝑊‘(𝐿 − 1))) | |
20 | 13, 14, 18, 19 | syl3anc 1318 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(#‘𝑊))) → ((𝑊 prefix 𝐿)‘(𝐿 − 1)) = (𝑊‘(𝐿 − 1))) |
21 | 4, 12, 20 | 3eqtrd 2648 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(#‘𝑊))) → ( lastS ‘(𝑊 prefix 𝐿)) = (𝑊‘(𝐿 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 ‘cfv 5804 (class class class)co 6549 0cc0 9815 1c1 9816 − cmin 10145 ℕcn 10897 ℤ≥cuz 11563 ...cfz 12197 ..^cfzo 12334 #chash 12979 Word cword 13146 lastS clsw 13147 prefix cpfx 40244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-lsw 13155 df-substr 13158 df-pfx 40245 |
This theorem is referenced by: pfxtrcfvl 40268 |
Copyright terms: Public domain | W3C validator |