Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxccatin12lem2 Structured version   Visualization version   GIF version

Theorem pfxccatin12lem2 40287
Description: Lemma 2 for pfxccatin12 40288. Could replace swrdccatin12lem2 13340. (Contributed by AV, 9-May-2020.)
Hypothesis
Ref Expression
pfxccatin12.l 𝐿 = (#‘𝐴)
Assertion
Ref Expression
pfxccatin12lem2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))

Proof of Theorem pfxccatin12lem2
StepHypRef Expression
1 pfxccatin12.l . . . . . 6 𝐿 = (#‘𝐴)
21swrdccatin12lem2c 13339 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
32adantr 480 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
4 simprl 790 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ (0..^(𝑁𝑀)))
5 swrdfv 13276 . . . 4 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))) ∧ 𝐾 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
63, 4, 5syl2anc 691 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
7 elfzoelz 12339 . . . . . . . 8 (𝐾 ∈ (0..^(𝑁𝑀)) → 𝐾 ∈ ℤ)
8 elfz2nn0 12300 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
9 nn0cn 11179 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
10 nn0cn 11179 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
119, 10anim12i 588 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
12 zcn 11259 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
13 subcl 10159 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1413ancoms 468 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1514anim2i 591 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝐾 ∈ ℂ ∧ (𝐿𝑀) ∈ ℂ))
1615ancoms 468 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 ∈ ℂ ∧ (𝐿𝑀) ∈ ℂ))
17 subcl 10159 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ (𝐿𝑀) ∈ ℂ) → (𝐾 − (𝐿𝑀)) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 − (𝐿𝑀)) ∈ ℂ)
1918addid1d 10115 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝐾 − (𝐿𝑀)) + 0) = (𝐾 − (𝐿𝑀)))
20 simpr 476 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝐾 ∈ ℂ)
21 simplr 788 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝐿 ∈ ℂ)
22 simpll 786 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝑀 ∈ ℂ)
2320, 21, 22subsub3d 10301 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 − (𝐿𝑀)) = ((𝐾 + 𝑀) − 𝐿))
2419, 23eqtr2d 2645 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿𝑀)) + 0))
2511, 12, 24syl2an 493 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿𝑀)) + 0))
26 oveq2 6557 . . . . . . . . . . . . . . . 16 ((#‘𝐴) = 𝐿 → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 + 𝑀) − 𝐿))
2726eqcoms 2618 . . . . . . . . . . . . . . 15 (𝐿 = (#‘𝐴) → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 + 𝑀) − 𝐿))
2827eqeq1d 2612 . . . . . . . . . . . . . 14 (𝐿 = (#‘𝐴) → (((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0) ↔ ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿𝑀)) + 0)))
2925, 28syl5ibr 235 . . . . . . . . . . . . 13 (𝐿 = (#‘𝐴) → (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
301, 29ax-mp 5 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0))
3130ex 449 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
32313adant3 1074 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
338, 32sylbi 206 . . . . . . . . 9 (𝑀 ∈ (0...𝐿) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3433ad2antrl 760 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
357, 34syl5com 31 . . . . . . 7 (𝐾 ∈ (0..^(𝑁𝑀)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3635adantr 480 . . . . . 6 ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3736impcom 445 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0))
3837fveq2d 6107 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐵‘((𝐾 + 𝑀) − (#‘𝐴))) = (𝐵‘((𝐾 − (𝐿𝑀)) + 0)))
39 simpll 786 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
40 swrdccatin12lem2a 13336 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (#‘𝐵)))))
4140adantl 481 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (#‘𝐵)))))
4241imp 444 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (#‘𝐵))))
43 id 22 . . . . . . . . . . 11 ((#‘𝐴) = 𝐿 → (#‘𝐴) = 𝐿)
44 oveq1 6556 . . . . . . . . . . 11 ((#‘𝐴) = 𝐿 → ((#‘𝐴) + (#‘𝐵)) = (𝐿 + (#‘𝐵)))
4543, 44oveq12d 6567 . . . . . . . . . 10 ((#‘𝐴) = 𝐿 → ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))) = (𝐿..^(𝐿 + (#‘𝐵))))
4645eleq2d 2673 . . . . . . . . 9 ((#‘𝐴) = 𝐿 → ((𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (#‘𝐵)))))
4746eqcoms 2618 . . . . . . . 8 (𝐿 = (#‘𝐴) → ((𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (#‘𝐵)))))
481, 47ax-mp 5 . . . . . . 7 ((𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (#‘𝐵))))
4942, 48sylibr 223 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))))
50 df-3an 1033 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))))
5139, 49, 50sylanbrc 695 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))))
52 ccatval2 13215 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐵‘((𝐾 + 𝑀) − (#‘𝐴))))
5351, 52syl 17 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐵‘((𝐾 + 𝑀) − (#‘𝐴))))
54 simplr 788 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐵 ∈ Word 𝑉)
5554adantr 480 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐵 ∈ Word 𝑉)
56 lencl 13179 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℕ0)
57 elfzel2 12211 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝐿) → 𝐿 ∈ ℤ)
58 zsubcl 11296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
5958ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
6059adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℤ)
61 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
62 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
63 subge0 10420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
6461, 62, 63syl2anr 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
6564biimprd 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 → 0 ≤ (𝑁𝐿)))
6665imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿𝑁) → 0 ≤ (𝑁𝐿))
67 elnn0z 11267 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁𝐿) ∈ ℕ0 ↔ ((𝑁𝐿) ∈ ℤ ∧ 0 ≤ (𝑁𝐿)))
6860, 66, 67sylanbrc 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℕ0)
6968expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿𝑁 → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℕ0))
7069adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℕ0))
7170expcomd 453 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))) → (𝑁 ∈ ℤ → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0)))
7271com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → ((𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))) → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0)))
73723ad2ant3 1077 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))) → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0)))
7473imp 444 . . . . . . . . . . . . . . . . . . . 20 (((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵)))) → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0))
7574com12 32 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → (((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵)))) → (𝑁𝐿) ∈ ℕ0))
7675adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵)))) → (𝑁𝐿) ∈ ℕ0))
7776imp 444 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))))) → (𝑁𝐿) ∈ ℕ0)
78 simplr 788 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))))) → (#‘𝐵) ∈ ℕ0)
79613ad2ant3 1077 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
8079adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
8162adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → 𝐿 ∈ ℝ)
8281adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐿 ∈ ℝ)
83 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝐵) ∈ ℕ0 → (#‘𝐵) ∈ ℝ)
8483adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (#‘𝐵) ∈ ℝ)
8584adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (#‘𝐵) ∈ ℝ)
86 lesubadd2 10380 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (#‘𝐵) ∈ ℝ) → ((𝑁𝐿) ≤ (#‘𝐵) ↔ 𝑁 ≤ (𝐿 + (#‘𝐵))))
8786biimprd 237 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (#‘𝐵) ∈ ℝ) → (𝑁 ≤ (𝐿 + (#‘𝐵)) → (𝑁𝐿) ≤ (#‘𝐵)))
8880, 82, 85, 87syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ≤ (𝐿 + (#‘𝐵)) → (𝑁𝐿) ≤ (#‘𝐵)))
8988ex 449 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ (𝐿 + (#‘𝐵)) → (𝑁𝐿) ≤ (#‘𝐵))))
9089com13 86 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ≤ (𝐿 + (#‘𝐵)) → ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (𝑁𝐿) ≤ (#‘𝐵))))
9190adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))) → ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (𝑁𝐿) ≤ (#‘𝐵))))
9291impcom 445 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵)))) → ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (𝑁𝐿) ≤ (#‘𝐵)))
9392impcom 445 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))))) → (𝑁𝐿) ≤ (#‘𝐵))
9477, 78, 933jca 1235 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))))) → ((𝑁𝐿) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (𝑁𝐿) ≤ (#‘𝐵)))
9594ex 449 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵)))) → ((𝑁𝐿) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (𝑁𝐿) ≤ (#‘𝐵))))
96 elfz2 12204 . . . . . . . . . . . . . . 15 (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) ↔ ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵)))))
97 elfz2nn0 12300 . . . . . . . . . . . . . . 15 ((𝑁𝐿) ∈ (0...(#‘𝐵)) ↔ ((𝑁𝐿) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (𝑁𝐿) ≤ (#‘𝐵)))
9895, 96, 973imtr4g 284 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
9998ex 449 . . . . . . . . . . . . 13 (𝐿 ∈ ℤ → ((#‘𝐵) ∈ ℕ0 → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → (𝑁𝐿) ∈ (0...(#‘𝐵)))))
10099com23 84 . . . . . . . . . . . 12 (𝐿 ∈ ℤ → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → ((#‘𝐵) ∈ ℕ0 → (𝑁𝐿) ∈ (0...(#‘𝐵)))))
10157, 100syl 17 . . . . . . . . . . 11 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → ((#‘𝐵) ∈ ℕ0 → (𝑁𝐿) ∈ (0...(#‘𝐵)))))
102101imp 444 . . . . . . . . . 10 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((#‘𝐵) ∈ ℕ0 → (𝑁𝐿) ∈ (0...(#‘𝐵))))
10356, 102syl5com 31 . . . . . . . . 9 (𝐵 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
104103adantl 481 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
105104imp 444 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑁𝐿) ∈ (0...(#‘𝐵)))
106105adantr 480 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝑁𝐿) ∈ (0...(#‘𝐵)))
107 pfxccatin12lem1 40286 . . . . . . . 8 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
108107adantl 481 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
109108imp 444 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿)))
110 pfxfv 40262 . . . . . 6 ((𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(#‘𝐵)) ∧ (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))) → ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))) = (𝐵‘(𝐾 − (𝐿𝑀))))
11155, 106, 109, 110syl3anc 1318 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))) = (𝐵‘(𝐾 − (𝐿𝑀))))
1127zcnd 11359 . . . . . . . . . 10 (𝐾 ∈ (0..^(𝑁𝑀)) → 𝐾 ∈ ℂ)
113112ad2antrl 760 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ ℂ)
11457zcnd 11359 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝐿) → 𝐿 ∈ ℂ)
115114ad2antrl 760 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐿 ∈ ℂ)
116115adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐿 ∈ ℂ)
117 elfzelz 12213 . . . . . . . . . . . . 13 (𝑀 ∈ (0...𝐿) → 𝑀 ∈ ℤ)
118117zcnd 11359 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝐿) → 𝑀 ∈ ℂ)
119118ad2antrl 760 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝑀 ∈ ℂ)
120119adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝑀 ∈ ℂ)
121116, 120subcld 10271 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐿𝑀) ∈ ℂ)
122113, 121subcld 10271 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) ∈ ℂ)
123122addid1d 10115 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐾 − (𝐿𝑀)) + 0) = (𝐾 − (𝐿𝑀)))
124123eqcomd 2616 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) = ((𝐾 − (𝐿𝑀)) + 0))
125124fveq2d 6107 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐵‘(𝐾 − (𝐿𝑀))) = (𝐵‘((𝐾 − (𝐿𝑀)) + 0)))
126111, 125eqtrd 2644 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))) = (𝐵‘((𝐾 − (𝐿𝑀)) + 0)))
12738, 53, 1263eqtr4d 2654 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))))
128 simpll 786 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐴 ∈ Word 𝑉)
129 simprl 790 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝑀 ∈ (0...𝐿))
130 lencl 13179 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℕ0)
131 elnn0uz 11601 . . . . . . . . . . . . . 14 ((#‘𝐴) ∈ ℕ0 ↔ (#‘𝐴) ∈ (ℤ‘0))
132 eluzfz2 12220 . . . . . . . . . . . . . 14 ((#‘𝐴) ∈ (ℤ‘0) → (#‘𝐴) ∈ (0...(#‘𝐴)))
133131, 132sylbi 206 . . . . . . . . . . . . 13 ((#‘𝐴) ∈ ℕ0 → (#‘𝐴) ∈ (0...(#‘𝐴)))
1341, 133syl5eqel 2692 . . . . . . . . . . . 12 ((#‘𝐴) ∈ ℕ0𝐿 ∈ (0...(#‘𝐴)))
135130, 134syl 17 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(#‘𝐴)))
136135adantr 480 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ (0...(#‘𝐴)))
137136adantr 480 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐿 ∈ (0...(#‘𝐴)))
138128, 129, 1373jca 1235 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘𝐴))))
139138adantr 480 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘𝐴))))
140 swrdlen 13275 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘𝐴))) → (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
141139, 140syl 17 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
142141eqcomd 2616 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐿𝑀) = (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))
143142oveq2d 6565 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) = (𝐾 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩))))
144143fveq2d 6107 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
1456, 127, 1443eqtrd 2648 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
146145ex 449 1 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818  cle 9954  cmin 10145  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   ++ cconcat 13148   substr csubstr 13150   prefix cpfx 40244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-substr 13158  df-pfx 40245
This theorem is referenced by:  pfxccatin12  40288
  Copyright terms: Public domain W3C validator