Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxccat3a Structured version   Visualization version   GIF version

Theorem pfxccat3a 40292
Description: A prefix of a concatenation is either a prefix of the first concatenated word or a concatenation of the first word with a prefix of the second word. Could replace swrdccat3a 13345. (Contributed by AV, 10-May-2020.)
Hypotheses
Ref Expression
pfxccatin12.l 𝐿 = (#‘𝐴)
pfxccatpfx2.m 𝑀 = (#‘𝐵)
Assertion
Ref Expression
pfxccat3a ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))

Proof of Theorem pfxccat3a
StepHypRef Expression
1 simprl 790 . . . . . 6 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 elfznn0 12302 . . . . . . . . 9 (𝑁 ∈ (0...(𝐿 + 𝑀)) → 𝑁 ∈ ℕ0)
32adantl 481 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝑁 ∈ ℕ0)
43adantl 481 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ ℕ0)
5 pfxccatin12.l . . . . . . . . . . 11 𝐿 = (#‘𝐴)
6 lencl 13179 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℕ0)
75, 6syl5eqel 2692 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
87adantr 480 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ ℕ0)
98adantr 480 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝐿 ∈ ℕ0)
109adantl 481 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝐿 ∈ ℕ0)
11 simpl 472 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁𝐿)
12 elfz2nn0 12300 . . . . . . 7 (𝑁 ∈ (0...𝐿) ↔ (𝑁 ∈ ℕ0𝐿 ∈ ℕ0𝑁𝐿))
134, 10, 11, 12syl3anbrc 1239 . . . . . 6 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ (0...𝐿))
14 df-3an 1033 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...𝐿)))
151, 13, 14sylanbrc 695 . . . . 5 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)))
165pfxccatpfx1 40290 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
1715, 16syl 17 . . . 4 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
18 iftrue 4042 . . . . 5 (𝑁𝐿 → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 prefix 𝑁))
1918adantr 480 . . . 4 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 prefix 𝑁))
2017, 19eqtr4d 2647 . . 3 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
21 simprl 790 . . . . . 6 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
22 elfz2nn0 12300 . . . . . . . . 9 (𝑁 ∈ (0...(𝐿 + 𝑀)) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)))
235eleq1i 2679 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 ↔ (#‘𝐴) ∈ ℕ0)
24 nn0ltp1le 11312 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 < 𝑁 ↔ (𝐿 + 1) ≤ 𝑁))
25 nn0re 11178 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
26 nn0re 11178 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27 ltnle 9996 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
2825, 26, 27syl2an 493 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
2924, 28bitr3d 269 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐿 + 1) ≤ 𝑁 ↔ ¬ 𝑁𝐿))
30293ad2antr1 1219 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → ((𝐿 + 1) ≤ 𝑁 ↔ ¬ 𝑁𝐿))
31 simpr3 1062 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → 𝑁 ≤ (𝐿 + 𝑀))
3231anim1i 590 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝑁 ≤ (𝐿 + 𝑀) ∧ (𝐿 + 1) ≤ 𝑁))
3332ancomd 466 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀)))
34 nn0z 11277 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
35343ad2ant1 1075 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → 𝑁 ∈ ℤ)
3635adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → 𝑁 ∈ ℤ)
3736adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → 𝑁 ∈ ℤ)
38 peano2nn0 11210 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ0)
3938nn0zd 11356 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℤ)
4039adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (𝐿 + 1) ∈ ℤ)
4140adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝐿 + 1) ∈ ℤ)
42 nn0z 11277 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 + 𝑀) ∈ ℕ0 → (𝐿 + 𝑀) ∈ ℤ)
43423ad2ant2 1076 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (𝐿 + 𝑀) ∈ ℤ)
4443adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (𝐿 + 𝑀) ∈ ℤ)
4544adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝐿 + 𝑀) ∈ ℤ)
46 elfz 12203 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (𝐿 + 1) ∈ ℤ ∧ (𝐿 + 𝑀) ∈ ℤ) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) ↔ ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀))))
4737, 41, 45, 46syl3anc 1318 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) ↔ ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀))))
4833, 47mpbird 246 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))
4948ex 449 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → ((𝐿 + 1) ≤ 𝑁𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5030, 49sylbird 249 . . . . . . . . . . . . 13 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5150ex 449 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5223, 51sylbir 224 . . . . . . . . . . 11 ((#‘𝐴) ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
536, 52syl 17 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5453adantr 480 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5522, 54syl5bi 231 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5655imp 444 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5756impcom 445 . . . . . 6 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))
58 df-3an 1033 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5921, 57, 58sylanbrc 695 . . . . 5 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
60 pfxccatpfx2.m . . . . . 6 𝑀 = (#‘𝐵)
615, 60pfxccatpfx2 40291 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6259, 61syl 17 . . . 4 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
63 iffalse 4045 . . . . 5 𝑁𝐿 → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6463adantr 480 . . . 4 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6562, 64eqtr4d 2647 . . 3 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
6620, 65pm2.61ian 827 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
6766ex 449 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  0cn0 11169  cz 11254  ...cfz 12197  #chash 12979  Word cword 13146   ++ cconcat 13148   prefix cpfx 40244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-substr 13158  df-pfx 40245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator