Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem1N Structured version   Visualization version   GIF version

Theorem pexmidlem1N 34274
 Description: Lemma for pexmidN 34273. Holland's proof implicitly requires 𝑞 ≠ 𝑟, which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem1N (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞𝑟)

Proof of Theorem pexmidlem1N
StepHypRef Expression
1 n0i 3879 . . 3 (𝑟 ∈ (𝑋 ∩ ( 𝑋)) → ¬ (𝑋 ∩ ( 𝑋)) = ∅)
2 pexmidlem.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 pexmidlem.o . . . . 5 = (⊥𝑃𝐾)
42, 3pnonsingN 34237 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ ( 𝑋)) = ∅)
54adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → (𝑋 ∩ ( 𝑋)) = ∅)
61, 5nsyl3 132 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → ¬ 𝑟 ∈ (𝑋 ∩ ( 𝑋)))
7 simprr 792 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞 ∈ ( 𝑋))
8 eleq1 2676 . . . . . 6 (𝑞 = 𝑟 → (𝑞 ∈ ( 𝑋) ↔ 𝑟 ∈ ( 𝑋)))
97, 8syl5ibcom 234 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → (𝑞 = 𝑟𝑟 ∈ ( 𝑋)))
10 simprl 790 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑟𝑋)
119, 10jctild 564 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → (𝑞 = 𝑟 → (𝑟𝑋𝑟 ∈ ( 𝑋))))
12 elin 3758 . . . 4 (𝑟 ∈ (𝑋 ∩ ( 𝑋)) ↔ (𝑟𝑋𝑟 ∈ ( 𝑋)))
1311, 12syl6ibr 241 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → (𝑞 = 𝑟𝑟 ∈ (𝑋 ∩ ( 𝑋))))
1413necon3bd 2796 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → (¬ 𝑟 ∈ (𝑋 ∩ ( 𝑋)) → 𝑞𝑟))
156, 14mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞𝑟)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  {csn 4125  ‘cfv 5804  (class class class)co 6549  lecple 15775  joincjn 16767  Atomscatm 33568  HLchlt 33655  +𝑃cpadd 34099  ⊥𝑃cpolN 34206 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-undef 7286  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-pmap 33808  df-polarityN 34207 This theorem is referenced by:  pexmidlem3N  34276
 Copyright terms: Public domain W3C validator