Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  perfectALTV Structured version   Visualization version   GIF version

Theorem perfectALTV 40166
 Description: The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime). (It follows from this that 𝑝 is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
perfectALTV ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
Distinct variable group:   𝑁,𝑝

Proof of Theorem perfectALTV
StepHypRef Expression
1 2dvdseven 40104 . . . . . . . 8 (𝑁 ∈ Even → 2 ∥ 𝑁)
21ad2antlr 759 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 2 ∥ 𝑁)
3 2prm 15243 . . . . . . . 8 2 ∈ ℙ
4 simpll 786 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 ∈ ℕ)
5 pcelnn 15412 . . . . . . . 8 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((2 pCnt 𝑁) ∈ ℕ ↔ 2 ∥ 𝑁))
63, 4, 5sylancr 694 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2 pCnt 𝑁) ∈ ℕ ↔ 2 ∥ 𝑁))
72, 6mpbird 246 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℕ)
87nnzd 11357 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℤ)
98peano2zd 11361 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2 pCnt 𝑁) + 1) ∈ ℤ)
10 pcdvds 15406 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (2↑(2 pCnt 𝑁)) ∥ 𝑁)
113, 4, 10sylancr 694 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∥ 𝑁)
12 2nn 11062 . . . . . . . . . 10 2 ∈ ℕ
137nnnn0d 11228 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℕ0)
14 nnexpcl 12735 . . . . . . . . . 10 ((2 ∈ ℕ ∧ (2 pCnt 𝑁) ∈ ℕ0) → (2↑(2 pCnt 𝑁)) ∈ ℕ)
1512, 13, 14sylancr 694 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∈ ℕ)
16 nndivdvds 14827 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (2↑(2 pCnt 𝑁)) ∈ ℕ) → ((2↑(2 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ))
174, 15, 16syl2anc 691 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ))
1811, 17mpbid 221 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℕ)
1918nnzd 11357 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℤ)
20 pcndvds2 15410 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥ (𝑁 / (2↑(2 pCnt 𝑁))))
213, 4, 20sylancr 694 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ¬ 2 ∥ (𝑁 / (2↑(2 pCnt 𝑁))))
22 isodd3 40103 . . . . . . . 8 ((𝑁 / (2↑(2 pCnt 𝑁))) ∈ Odd ↔ ((𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℤ ∧ ¬ 2 ∥ (𝑁 / (2↑(2 pCnt 𝑁)))))
2319, 21, 22sylanbrc 695 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ Odd )
24 simpr 476 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ 𝑁) = (2 · 𝑁))
25 nncn 10905 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2625ad2antrr 758 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 ∈ ℂ)
2715nncnd 10913 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ∈ ℂ)
2815nnne0d 10942 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) ≠ 0)
2926, 27, 28divcan2d 10682 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁)))) = 𝑁)
3029oveq2d 6565 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (1 σ 𝑁))
3129oveq2d 6565 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 · ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (2 · 𝑁))
3224, 30, 313eqtr4d 2654 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (1 σ ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))) = (2 · ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁))))))
337, 18, 23, 32perfectALTVlem2 40165 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℙ ∧ (𝑁 / (2↑(2 pCnt 𝑁))) = ((2↑((2 pCnt 𝑁) + 1)) − 1)))
3433simprd 478 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) = ((2↑((2 pCnt 𝑁) + 1)) − 1))
3533simpld 474 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (𝑁 / (2↑(2 pCnt 𝑁))) ∈ ℙ)
3634, 35eqeltrrd 2689 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ)
377nncnd 10913 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) ∈ ℂ)
38 ax-1cn 9873 . . . . . . . . 9 1 ∈ ℂ
39 pncan 10166 . . . . . . . . 9 (((2 pCnt 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 pCnt 𝑁) + 1) − 1) = (2 pCnt 𝑁))
4037, 38, 39sylancl 693 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (((2 pCnt 𝑁) + 1) − 1) = (2 pCnt 𝑁))
4140eqcomd 2616 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2 pCnt 𝑁) = (((2 pCnt 𝑁) + 1) − 1))
4241oveq2d 6565 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → (2↑(2 pCnt 𝑁)) = (2↑(((2 pCnt 𝑁) + 1) − 1)))
4342, 34oveq12d 6567 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ((2↑(2 pCnt 𝑁)) · (𝑁 / (2↑(2 pCnt 𝑁)))) = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
4429, 43eqtr3d 2646 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
45 oveq2 6557 . . . . . . . 8 (𝑝 = ((2 pCnt 𝑁) + 1) → (2↑𝑝) = (2↑((2 pCnt 𝑁) + 1)))
4645oveq1d 6564 . . . . . . 7 (𝑝 = ((2 pCnt 𝑁) + 1) → ((2↑𝑝) − 1) = ((2↑((2 pCnt 𝑁) + 1)) − 1))
4746eleq1d 2672 . . . . . 6 (𝑝 = ((2 pCnt 𝑁) + 1) → (((2↑𝑝) − 1) ∈ ℙ ↔ ((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ))
48 oveq1 6556 . . . . . . . . 9 (𝑝 = ((2 pCnt 𝑁) + 1) → (𝑝 − 1) = (((2 pCnt 𝑁) + 1) − 1))
4948oveq2d 6565 . . . . . . . 8 (𝑝 = ((2 pCnt 𝑁) + 1) → (2↑(𝑝 − 1)) = (2↑(((2 pCnt 𝑁) + 1) − 1)))
5049, 46oveq12d 6567 . . . . . . 7 (𝑝 = ((2 pCnt 𝑁) + 1) → ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))
5150eqeq2d 2620 . . . . . 6 (𝑝 = ((2 pCnt 𝑁) + 1) → (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) ↔ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1))))
5247, 51anbi12d 743 . . . . 5 (𝑝 = ((2 pCnt 𝑁) + 1) → ((((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) ↔ (((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))))
5352rspcev 3282 . . . 4 ((((2 pCnt 𝑁) + 1) ∈ ℤ ∧ (((2↑((2 pCnt 𝑁) + 1)) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(((2 pCnt 𝑁) + 1) − 1)) · ((2↑((2 pCnt 𝑁) + 1)) − 1)))) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
549, 36, 44, 53syl12anc 1316 . . 3 (((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) ∧ (1 σ 𝑁) = (2 · 𝑁)) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
5554ex 449 . 2 ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ((1 σ 𝑁) = (2 · 𝑁) → ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
56 perfect1 24753 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = ((2↑𝑝) · ((2↑𝑝) − 1)))
57 2cn 10968 . . . . . . . . 9 2 ∈ ℂ
58 mersenne 24752 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 𝑝 ∈ ℙ)
59 prmnn 15226 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
6058, 59syl 17 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 𝑝 ∈ ℕ)
61 expm1t 12750 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑝 ∈ ℕ) → (2↑𝑝) = ((2↑(𝑝 − 1)) · 2))
6257, 60, 61sylancr 694 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑𝑝) = ((2↑(𝑝 − 1)) · 2))
63 nnm1nn0 11211 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (𝑝 − 1) ∈ ℕ0)
6460, 63syl 17 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (𝑝 − 1) ∈ ℕ0)
65 expcl 12740 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝑝 − 1) ∈ ℕ0) → (2↑(𝑝 − 1)) ∈ ℂ)
6657, 64, 65sylancr 694 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑(𝑝 − 1)) ∈ ℂ)
67 mulcom 9901 . . . . . . . . 9 (((2↑(𝑝 − 1)) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑(𝑝 − 1)) · 2) = (2 · (2↑(𝑝 − 1))))
6866, 57, 67sylancl 693 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑(𝑝 − 1)) · 2) = (2 · (2↑(𝑝 − 1))))
6962, 68eqtrd 2644 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (2↑𝑝) = (2 · (2↑(𝑝 − 1))))
7069oveq1d 6564 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) · ((2↑𝑝) − 1)) = ((2 · (2↑(𝑝 − 1))) · ((2↑𝑝) − 1)))
71 2cnd 10970 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → 2 ∈ ℂ)
72 prmnn 15226 . . . . . . . . 9 (((2↑𝑝) − 1) ∈ ℙ → ((2↑𝑝) − 1) ∈ ℕ)
7372adantl 481 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) − 1) ∈ ℕ)
7473nncnd 10913 . . . . . . 7 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2↑𝑝) − 1) ∈ ℂ)
7571, 66, 74mulassd 9942 . . . . . 6 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → ((2 · (2↑(𝑝 − 1))) · ((2↑𝑝) − 1)) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
7656, 70, 753eqtrd 2648 . . . . 5 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
77 oveq2 6557 . . . . . 6 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (1 σ 𝑁) = (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
78 oveq2 6557 . . . . . 6 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (2 · 𝑁) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))
7977, 78eqeq12d 2625 . . . . 5 (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → ((1 σ 𝑁) = (2 · 𝑁) ↔ (1 σ ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) = (2 · ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
8076, 79syl5ibrcom 236 . . . 4 ((𝑝 ∈ ℤ ∧ ((2↑𝑝) − 1) ∈ ℙ) → (𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)) → (1 σ 𝑁) = (2 · 𝑁)))
8180impr 647 . . 3 ((𝑝 ∈ ℤ ∧ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))) → (1 σ 𝑁) = (2 · 𝑁))
8281rexlimiva 3010 . 2 (∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))) → (1 σ 𝑁) = (2 · 𝑁))
8355, 82impbid1 214 1 ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   class class class wbr 4583  (class class class)co 6549  ℂcc 9813  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ↑cexp 12722   ∥ cdvds 14821  ℙcprime 15223   pCnt cpc 15379   σ csgm 24622   Even ceven 40075   Odd codd 40076 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-sgm 24628  df-even 40077  df-odd 40078 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator