MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfect1 Structured version   Visualization version   GIF version

Theorem perfect1 24753
Description: Euclid's contribution to the Euclid-Euler theorem. A number of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((2↑𝑃) · ((2↑𝑃) − 1)))

Proof of Theorem perfect1
StepHypRef Expression
1 mersenne 24752 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)
2 prmnn 15226 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ)
4 1sgm2ppw 24725 . . . 4 (𝑃 ∈ ℕ → (1 σ (2↑(𝑃 − 1))) = ((2↑𝑃) − 1))
53, 4syl 17 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ (2↑(𝑃 − 1))) = ((2↑𝑃) − 1))
6 1sgmprm 24724 . . . . 5 (((2↑𝑃) − 1) ∈ ℙ → (1 σ ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) + 1))
76adantl 481 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) + 1))
8 2nn 11062 . . . . . . 7 2 ∈ ℕ
93nnnn0d 11228 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ0)
10 nnexpcl 12735 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑃 ∈ ℕ0) → (2↑𝑃) ∈ ℕ)
118, 9, 10sylancr 694 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℕ)
1211nncnd 10913 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℂ)
13 ax-1cn 9873 . . . . 5 1 ∈ ℂ
14 npcan 10169 . . . . 5 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑𝑃) − 1) + 1) = (2↑𝑃))
1512, 13, 14sylancl 693 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) + 1) = (2↑𝑃))
167, 15eqtrd 2644 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑𝑃) − 1)) = (2↑𝑃))
175, 16oveq12d 6567 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))) = (((2↑𝑃) − 1) · (2↑𝑃)))
1813a1i 11 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℂ)
19 nnm1nn0 11211 . . . . 5 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
203, 19syl 17 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (𝑃 − 1) ∈ ℕ0)
21 nnexpcl 12735 . . . 4 ((2 ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ0) → (2↑(𝑃 − 1)) ∈ ℕ)
228, 20, 21sylancr 694 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑(𝑃 − 1)) ∈ ℕ)
23 prmnn 15226 . . . 4 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℕ)
2423adantl 481 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℕ)
2522nnzd 11357 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑(𝑃 − 1)) ∈ ℤ)
26 prmz 15227 . . . . . 6 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℤ)
2726adantl 481 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℤ)
28 gcdcom 15073 . . . . 5 (((2↑(𝑃 − 1)) ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℤ) → ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))))
2925, 27, 28syl2anc 691 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))))
30 iddvds 14833 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℤ → ((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1))
3127, 30syl 17 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1))
32 prmuz2 15246 . . . . . . . . . 10 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ (ℤ‘2))
3332adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ (ℤ‘2))
34 eluz2b2 11637 . . . . . . . . . 10 (((2↑𝑃) − 1) ∈ (ℤ‘2) ↔ (((2↑𝑃) − 1) ∈ ℕ ∧ 1 < ((2↑𝑃) − 1)))
3534simprbi 479 . . . . . . . . 9 (((2↑𝑃) − 1) ∈ (ℤ‘2) → 1 < ((2↑𝑃) − 1))
3633, 35syl 17 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < ((2↑𝑃) − 1))
37 ndvdsp1 14973 . . . . . . . 8 ((((2↑𝑃) − 1) ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℕ ∧ 1 < ((2↑𝑃) − 1)) → (((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
3827, 24, 36, 37syl3anc 1318 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
3931, 38mpd 15 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1))
40 2z 11286 . . . . . . . . 9 2 ∈ ℤ
4140a1i 11 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ∈ ℤ)
42 dvdsmultr1 14857 . . . . . . . 8 ((((2↑𝑃) − 1) ∈ ℤ ∧ (2↑(𝑃 − 1)) ∈ ℤ ∧ 2 ∈ ℤ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2)))
4327, 25, 41, 42syl3anc 1318 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2)))
44 2cn 10968 . . . . . . . . . 10 2 ∈ ℂ
45 expm1t 12750 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑃 ∈ ℕ) → (2↑𝑃) = ((2↑(𝑃 − 1)) · 2))
4644, 3, 45sylancr 694 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) = ((2↑(𝑃 − 1)) · 2))
4715, 46eqtr2d 2645 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) · 2) = (((2↑𝑃) − 1) + 1))
4847breq2d 4595 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2) ↔ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
4943, 48sylibd 228 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
5039, 49mtod 188 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)))
51 simpr 476 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℙ)
52 coprm 15261 . . . . . 6 ((((2↑𝑃) − 1) ∈ ℙ ∧ (2↑(𝑃 − 1)) ∈ ℤ) → (¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) ↔ (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1))
5351, 25, 52syl2anc 691 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) ↔ (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1))
5450, 53mpbid 221 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1)
5529, 54eqtrd 2644 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = 1)
56 sgmmul 24726 . . 3 ((1 ∈ ℂ ∧ ((2↑(𝑃 − 1)) ∈ ℕ ∧ ((2↑𝑃) − 1) ∈ ℕ ∧ ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = 1)) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))))
5718, 22, 24, 55, 56syl13anc 1320 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))))
58 subcl 10159 . . . 4 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑃) − 1) ∈ ℂ)
5912, 13, 58sylancl 693 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℂ)
6012, 59mulcomd 9940 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) · ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) · (2↑𝑃)))
6117, 57, 603eqtr4d 2654 1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((2↑𝑃) · ((2↑𝑃) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  cexp 12722  cdvds 14821   gcd cgcd 15054  cprime 15223   σ csgm 24622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-sgm 24628
This theorem is referenced by:  perfect  24756  perfectALTV  40166
  Copyright terms: Public domain W3C validator