Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfund14gap Structured version   Visualization version   GIF version

Theorem pellfund14gap 36469
 Description: There are no solutions between 1 and the fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellfund14gap ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 𝐴 = 1)

Proof of Theorem pellfund14gap
StepHypRef Expression
1 simp3r 1083 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 𝐴 < (PellFund‘𝐷))
2 pell14qrre 36439 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
323adant3 1074 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 𝐴 ∈ ℝ)
4 pellfundre 36463 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
543ad2ant1 1075 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ ℝ)
63, 5ltnled 10063 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → (𝐴 < (PellFund‘𝐷) ↔ ¬ (PellFund‘𝐷) ≤ 𝐴))
71, 6mpbid 221 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → ¬ (PellFund‘𝐷) ≤ 𝐴)
8 simpl1 1057 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) ∧ 1 < 𝐴) → 𝐷 ∈ (ℕ ∖ ◻NN))
9 simpl2 1058 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) ∧ 1 < 𝐴) → 𝐴 ∈ (Pell14QR‘𝐷))
10 simpr 476 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) ∧ 1 < 𝐴) → 1 < 𝐴)
11 pellfundlb 36466 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴)
128, 9, 10, 11syl3anc 1318 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴)
137, 12mtand 689 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → ¬ 1 < 𝐴)
14 simp3l 1082 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 1 ≤ 𝐴)
15 1re 9918 . . . . 5 1 ∈ ℝ
16 leloe 10003 . . . . 5 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 ≤ 𝐴 ↔ (1 < 𝐴 ∨ 1 = 𝐴)))
1715, 3, 16sylancr 694 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → (1 ≤ 𝐴 ↔ (1 < 𝐴 ∨ 1 = 𝐴)))
1814, 17mpbid 221 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → (1 < 𝐴 ∨ 1 = 𝐴))
19 orel1 396 . . 3 (¬ 1 < 𝐴 → ((1 < 𝐴 ∨ 1 = 𝐴) → 1 = 𝐴))
2013, 18, 19sylc 63 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 1 = 𝐴)
2120eqcomd 2616 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴𝐴 < (PellFund‘𝐷))) → 𝐴 = 1)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537   class class class wbr 4583  ‘cfv 5804  ℝcr 9814  1c1 9816   < clt 9953   ≤ cle 9954  ℕcn 10897  ◻NNcsquarenn 36418  Pell14QRcpell14qr 36421  PellFundcpellfund 36422 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ico 12052  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282  df-squarenn 36423  df-pell1qr 36424  df-pell14qr 36425  df-pell1234qr 36426  df-pellfund 36427 This theorem is referenced by:  pellfund14  36480
 Copyright terms: Public domain W3C validator