Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcmplfin Structured version   Visualization version   GIF version

Theorem pcmplfin 29255
Description: Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement 𝑣 that is locally finite. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Hypothesis
Ref Expression
pcmplfin.x 𝑋 = 𝐽
Assertion
Ref Expression
pcmplfin ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
Distinct variable groups:   𝑣,𝐽   𝑣,𝑈
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem pcmplfin
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simp2 1055 . . . 4 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑈𝐽)
2 ssexg 4732 . . . . . . 7 ((𝑈𝐽𝐽 ∈ Paracomp) → 𝑈 ∈ V)
32ancoms 468 . . . . . 6 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽) → 𝑈 ∈ V)
433adant3 1074 . . . . 5 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑈 ∈ V)
5 elpwg 4116 . . . . 5 (𝑈 ∈ V → (𝑈 ∈ 𝒫 𝐽𝑈𝐽))
64, 5syl 17 . . . 4 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → (𝑈 ∈ 𝒫 𝐽𝑈𝐽))
71, 6mpbird 246 . . 3 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑈 ∈ 𝒫 𝐽)
8 ispcmp 29252 . . . . . 6 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))
9 pcmplfin.x . . . . . . 7 𝑋 = 𝐽
109iscref 29239 . . . . . 6 (𝐽 ∈ CovHasRef(LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢)))
118, 10bitri 263 . . . . 5 (𝐽 ∈ Paracomp ↔ (𝐽 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢)))
1211simprbi 479 . . . 4 (𝐽 ∈ Paracomp → ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢))
13123ad2ant1 1075 . . 3 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢))
14 simp3 1056 . . 3 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑋 = 𝑈)
15 unieq 4380 . . . . . 6 (𝑢 = 𝑈 𝑢 = 𝑈)
1615eqeq2d 2620 . . . . 5 (𝑢 = 𝑈 → (𝑋 = 𝑢𝑋 = 𝑈))
17 breq2 4587 . . . . . 6 (𝑢 = 𝑈 → (𝑣Ref𝑢𝑣Ref𝑈))
1817rexbidv 3034 . . . . 5 (𝑢 = 𝑈 → (∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢 ↔ ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈))
1916, 18imbi12d 333 . . . 4 (𝑢 = 𝑈 → ((𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢) ↔ (𝑋 = 𝑈 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)))
2019rspcv 3278 . . 3 (𝑈 ∈ 𝒫 𝐽 → (∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢) → (𝑋 = 𝑈 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)))
217, 13, 14, 20syl3c 64 . 2 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)
22 elin 3758 . . . . 5 (𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ↔ (𝑣 ∈ 𝒫 𝐽𝑣 ∈ (LocFin‘𝐽)))
2322anbi1i 727 . . . 4 ((𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑣Ref𝑈) ↔ ((𝑣 ∈ 𝒫 𝐽𝑣 ∈ (LocFin‘𝐽)) ∧ 𝑣Ref𝑈))
24 anass 679 . . . 4 (((𝑣 ∈ 𝒫 𝐽𝑣 ∈ (LocFin‘𝐽)) ∧ 𝑣Ref𝑈) ↔ (𝑣 ∈ 𝒫 𝐽 ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)))
2523, 24bitri 263 . . 3 ((𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑣Ref𝑈) ↔ (𝑣 ∈ 𝒫 𝐽 ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)))
2625rexbii2 3021 . 2 (∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈 ↔ ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
2721, 26sylib 207 1 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  cfv 5804  Topctop 20517  Refcref 21115  LocFinclocfin 21117  CovHasRefccref 29237  Paracompcpcmp 29250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-cref 29238  df-pcmp 29251
This theorem is referenced by:  pcmplfinf  29256
  Copyright terms: Public domain W3C validator