Step | Hyp | Ref
| Expression |
1 | | simp2 1055 |
. . . 4
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → 𝑈 ⊆ 𝐽) |
2 | | ssexg 4732 |
. . . . . . 7
⊢ ((𝑈 ⊆ 𝐽 ∧ 𝐽 ∈ Paracomp) → 𝑈 ∈ V) |
3 | 2 | ancoms 468 |
. . . . . 6
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽) → 𝑈 ∈ V) |
4 | 3 | 3adant3 1074 |
. . . . 5
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → 𝑈 ∈ V) |
5 | | elpwg 4116 |
. . . . 5
⊢ (𝑈 ∈ V → (𝑈 ∈ 𝒫 𝐽 ↔ 𝑈 ⊆ 𝐽)) |
6 | 4, 5 | syl 17 |
. . . 4
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → (𝑈 ∈ 𝒫 𝐽 ↔ 𝑈 ⊆ 𝐽)) |
7 | 1, 6 | mpbird 246 |
. . 3
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → 𝑈 ∈ 𝒫 𝐽) |
8 | | ispcmp 29252 |
. . . . . 6
⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈
CovHasRef(LocFin‘𝐽)) |
9 | | pcmplfin.x |
. . . . . . 7
⊢ 𝑋 = ∪
𝐽 |
10 | 9 | iscref 29239 |
. . . . . 6
⊢ (𝐽 ∈
CovHasRef(LocFin‘𝐽)
↔ (𝐽 ∈ Top ∧
∀𝑢 ∈ 𝒫
𝐽(𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢))) |
11 | 8, 10 | bitri 263 |
. . . . 5
⊢ (𝐽 ∈ Paracomp ↔ (𝐽 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢))) |
12 | 11 | simprbi 479 |
. . . 4
⊢ (𝐽 ∈ Paracomp →
∀𝑢 ∈ 𝒫
𝐽(𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢)) |
13 | 12 | 3ad2ant1 1075 |
. . 3
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∀𝑢 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢)) |
14 | | simp3 1056 |
. . 3
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → 𝑋 = ∪ 𝑈) |
15 | | unieq 4380 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ∪ 𝑢 = ∪
𝑈) |
16 | 15 | eqeq2d 2620 |
. . . . 5
⊢ (𝑢 = 𝑈 → (𝑋 = ∪ 𝑢 ↔ 𝑋 = ∪ 𝑈)) |
17 | | breq2 4587 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (𝑣Ref𝑢 ↔ 𝑣Ref𝑈)) |
18 | 17 | rexbidv 3034 |
. . . . 5
⊢ (𝑢 = 𝑈 → (∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢 ↔ ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)) |
19 | 16, 18 | imbi12d 333 |
. . . 4
⊢ (𝑢 = 𝑈 → ((𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢) ↔ (𝑋 = ∪ 𝑈 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈))) |
20 | 19 | rspcv 3278 |
. . 3
⊢ (𝑈 ∈ 𝒫 𝐽 → (∀𝑢 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢) → (𝑋 = ∪ 𝑈 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈))) |
21 | 7, 13, 14, 20 | syl3c 64 |
. 2
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈) |
22 | | elin 3758 |
. . . . 5
⊢ (𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ↔ (𝑣 ∈ 𝒫 𝐽 ∧ 𝑣 ∈ (LocFin‘𝐽))) |
23 | 22 | anbi1i 727 |
. . . 4
⊢ ((𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑣Ref𝑈) ↔ ((𝑣 ∈ 𝒫 𝐽 ∧ 𝑣 ∈ (LocFin‘𝐽)) ∧ 𝑣Ref𝑈)) |
24 | | anass 679 |
. . . 4
⊢ (((𝑣 ∈ 𝒫 𝐽 ∧ 𝑣 ∈ (LocFin‘𝐽)) ∧ 𝑣Ref𝑈) ↔ (𝑣 ∈ 𝒫 𝐽 ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))) |
25 | 23, 24 | bitri 263 |
. . 3
⊢ ((𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑣Ref𝑈) ↔ (𝑣 ∈ 𝒫 𝐽 ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))) |
26 | 25 | rexbii2 3021 |
. 2
⊢
(∃𝑣 ∈
(𝒫 𝐽 ∩
(LocFin‘𝐽))𝑣Ref𝑈 ↔ ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) |
27 | 21, 26 | sylib 207 |
1
⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) |