MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclem Structured version   Visualization version   GIF version

Theorem pclem 15381
Description: - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypothesis
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
Assertion
Ref Expression
pclem ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑛,𝑦,𝑁   𝑃,𝑛,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑛)

Proof of Theorem pclem
StepHypRef Expression
1 pclem.1 . . . . 5 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
2 ssrab2 3650 . . . . 5 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁} ⊆ ℕ0
31, 2eqsstri 3598 . . . 4 𝐴 ⊆ ℕ0
4 nn0ssz 11275 . . . 4 0 ⊆ ℤ
53, 4sstri 3577 . . 3 𝐴 ⊆ ℤ
65a1i 11 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝐴 ⊆ ℤ)
7 0nn0 11184 . . . . 5 0 ∈ ℕ0
87a1i 11 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 0 ∈ ℕ0)
9 eluzelcn 11575 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℂ)
109adantr 480 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℂ)
1110exp0d 12864 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑0) = 1)
12 1dvds 14834 . . . . . 6 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
1312ad2antrl 760 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 1 ∥ 𝑁)
1411, 13eqbrtrd 4605 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑0) ∥ 𝑁)
15 oveq2 6557 . . . . . 6 (𝑛 = 0 → (𝑃𝑛) = (𝑃↑0))
1615breq1d 4593 . . . . 5 (𝑛 = 0 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃↑0) ∥ 𝑁))
1716, 1elrab2 3333 . . . 4 (0 ∈ 𝐴 ↔ (0 ∈ ℕ0 ∧ (𝑃↑0) ∥ 𝑁))
188, 14, 17sylanbrc 695 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 0 ∈ 𝐴)
19 ne0i 3880 . . 3 (0 ∈ 𝐴𝐴 ≠ ∅)
2018, 19syl 17 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝐴 ≠ ∅)
21 nnssz 11274 . . 3 ℕ ⊆ ℤ
22 zcn 11259 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2322abscld 14023 . . . . . 6 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
2423ad2antrl 760 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (abs‘𝑁) ∈ ℝ)
25 eluzelre 11574 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
2625adantr 480 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℝ)
27 eluz2b2 11637 . . . . . . 7 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
2827simprbi 479 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
2928adantr 480 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 1 < 𝑃)
30 expnbnd 12855 . . . . 5 (((abs‘𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 1 < 𝑃) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥))
3124, 26, 29, 30syl3anc 1318 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥))
32 simprr 792 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
33 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝑃𝑛) = (𝑃𝑦))
3433breq1d 4593 . . . . . . . . . . . . . 14 (𝑛 = 𝑦 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃𝑦) ∥ 𝑁))
3534, 1elrab2 3333 . . . . . . . . . . . . 13 (𝑦𝐴 ↔ (𝑦 ∈ ℕ0 ∧ (𝑃𝑦) ∥ 𝑁))
3632, 35sylib 207 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ ℕ0 ∧ (𝑃𝑦) ∥ 𝑁))
3736simprd 478 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∥ 𝑁)
38 eluz2nn 11602 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
3938ad2antrr 758 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑃 ∈ ℕ)
4036simpld 474 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℕ0)
4139, 40nnexpcld 12892 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℕ)
4241nnzd 11357 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℤ)
43 simplrl 796 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑁 ∈ ℤ)
44 simplrr 797 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑁 ≠ 0)
45 dvdsleabs 14871 . . . . . . . . . . . 12 (((𝑃𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝑃𝑦) ∥ 𝑁 → (𝑃𝑦) ≤ (abs‘𝑁)))
4642, 43, 44, 45syl3anc 1318 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑃𝑦) ∥ 𝑁 → (𝑃𝑦) ≤ (abs‘𝑁)))
4737, 46mpd 15 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ≤ (abs‘𝑁))
4841nnred 10912 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℝ)
4924adantr 480 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘𝑁) ∈ ℝ)
5025ad2antrr 758 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑃 ∈ ℝ)
51 nnnn0 11176 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
5251ad2antrl 760 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℕ0)
5350, 52reexpcld 12887 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑥) ∈ ℝ)
54 lelttr 10007 . . . . . . . . . . 11 (((𝑃𝑦) ∈ ℝ ∧ (abs‘𝑁) ∈ ℝ ∧ (𝑃𝑥) ∈ ℝ) → (((𝑃𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃𝑥)) → (𝑃𝑦) < (𝑃𝑥)))
5548, 49, 53, 54syl3anc 1318 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (((𝑃𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃𝑥)) → (𝑃𝑦) < (𝑃𝑥)))
5647, 55mpand 707 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → (𝑃𝑦) < (𝑃𝑥)))
5740nn0zd 11356 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℤ)
58 nnz 11276 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
5958ad2antrl 760 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℤ)
6028ad2antrr 758 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 1 < 𝑃)
6150, 57, 59, 60ltexp2d 12900 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 < 𝑥 ↔ (𝑃𝑦) < (𝑃𝑥)))
6256, 61sylibrd 248 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦 < 𝑥))
6340nn0red 11229 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℝ)
64 nnre 10904 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
6564ad2antrl 760 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℝ)
66 ltle 10005 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥𝑦𝑥))
6763, 65, 66syl2anc 691 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 < 𝑥𝑦𝑥))
6862, 67syld 46 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦𝑥))
6968anassrs 678 . . . . . 6 ((((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) ∧ 𝑦𝐴) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦𝑥))
7069ralrimdva 2952 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) < (𝑃𝑥) → ∀𝑦𝐴 𝑦𝑥))
7170reximdva 3000 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥) → ∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥))
7231, 71mpd 15 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥)
73 ssrexv 3630 . . 3 (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
7421, 72, 73mpsyl 66 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
756, 20, 743jca 1235 1 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  wss 3540  c0 3874   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   < clt 9953  cle 9954  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  cexp 12722  abscabs 13822  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822
This theorem is referenced by:  pcprecl  15382  pcprendvds  15383  pcpremul  15386
  Copyright terms: Public domain W3C validator