Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pcl0bN | Structured version Visualization version GIF version |
Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pcl0b.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pcl0b.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pcl0bN | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcl0b.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | pcl0b.c | . . . . 5 ⊢ 𝑈 = (PCl‘𝐾) | |
3 | 1, 2 | pclssidN 34199 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → 𝑃 ⊆ (𝑈‘𝑃)) |
4 | eqimss 3620 | . . . 4 ⊢ ((𝑈‘𝑃) = ∅ → (𝑈‘𝑃) ⊆ ∅) | |
5 | 3, 4 | sylan9ss 3581 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ (𝑈‘𝑃) = ∅) → 𝑃 ⊆ ∅) |
6 | ss0 3926 | . . 3 ⊢ (𝑃 ⊆ ∅ → 𝑃 = ∅) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ (𝑈‘𝑃) = ∅) → 𝑃 = ∅) |
8 | fveq2 6103 | . . . 4 ⊢ (𝑃 = ∅ → (𝑈‘𝑃) = (𝑈‘∅)) | |
9 | 2 | pcl0N 34226 | . . . 4 ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) |
10 | 8, 9 | sylan9eqr 2666 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 = ∅) → (𝑈‘𝑃) = ∅) |
11 | 10 | adantlr 747 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ 𝑃 = ∅) → (𝑈‘𝑃) = ∅) |
12 | 7, 11 | impbida 873 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 ∅c0 3874 ‘cfv 5804 Atomscatm 33568 HLchlt 33655 PClcpclN 34191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-riotaBAD 33257 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-undef 7286 df-preset 16751 df-poset 16769 df-plt 16781 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-p0 16862 df-p1 16863 df-lat 16869 df-clat 16931 df-oposet 33481 df-ol 33483 df-oml 33484 df-covers 33571 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 df-psubsp 33807 df-pmap 33808 df-pclN 34192 df-polarityN 34207 |
This theorem is referenced by: pclfinclN 34254 |
Copyright terms: Public domain | W3C validator |