Proof of Theorem pcbcctr
Step | Hyp | Ref
| Expression |
1 | | 2nn 11062 |
. . . . 5
⊢ 2 ∈
ℕ |
2 | | nnmulcl 10920 |
. . . . 5
⊢ ((2
∈ ℕ ∧ 𝑁
∈ ℕ) → (2 · 𝑁) ∈ ℕ) |
3 | 1, 2 | mpan 702 |
. . . 4
⊢ (𝑁 ∈ ℕ → (2
· 𝑁) ∈
ℕ) |
4 | 3 | adantr 480 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2
· 𝑁) ∈
ℕ) |
5 | | nnnn0 11176 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
6 | | fzctr 12320 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈ (0...(2
· 𝑁))) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (0...(2 · 𝑁))) |
8 | 7 | adantr 480 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (0...(2 · 𝑁))) |
9 | | simpr 476 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈
ℙ) |
10 | | pcbc 15442 |
. . 3
⊢ (((2
· 𝑁) ∈ ℕ
∧ 𝑁 ∈ (0...(2
· 𝑁)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 ·
𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
11 | 4, 8, 9, 10 | syl3anc 1318 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 ·
𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
12 | | nncn 10905 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
13 | 12 | 2timesd 11152 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (2
· 𝑁) = (𝑁 + 𝑁)) |
14 | 13 | oveq1d 6564 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → ((2
· 𝑁) − 𝑁) = ((𝑁 + 𝑁) − 𝑁)) |
15 | 12, 12 | pncand 10272 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → ((𝑁 + 𝑁) − 𝑁) = 𝑁) |
16 | 14, 15 | eqtrd 2644 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → ((2
· 𝑁) − 𝑁) = 𝑁) |
17 | 16 | oveq1d 6564 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (((2
· 𝑁) − 𝑁) / (𝑃↑𝑘)) = (𝑁 / (𝑃↑𝑘))) |
18 | 17 | fveq2d 6107 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) = (⌊‘(𝑁 / (𝑃↑𝑘)))) |
19 | 18 | oveq1d 6564 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
20 | 19 | ad2antrr 758 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2
· 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
21 | | nnre 10904 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
22 | 21 | ad2antrr 758 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ) |
23 | | prmnn 15226 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
24 | 23 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈
ℕ) |
25 | | elfznn 12241 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ) |
26 | 25 | nnnn0d 11228 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ0) |
27 | | nnexpcl 12735 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ (𝑃↑𝑘) ∈
ℕ) |
28 | 24, 26, 27 | syl2an 493 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃↑𝑘) ∈ ℕ) |
29 | 22, 28 | nndivred 10946 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃↑𝑘)) ∈ ℝ) |
30 | 29 | flcld 12461 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℤ) |
31 | 30 | zcnd 11359 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℂ) |
32 | 31 | 2timesd 11152 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 ·
(⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
33 | 20, 32 | eqtr4d 2647 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2
· 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) |
34 | 33 | oveq2d 6565 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2
· 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 ·
𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) = ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
35 | 34 | sumeq2dv 14281 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
Σ𝑘 ∈ (1...(2
· 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 ·
𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
36 | 11, 35 | eqtrd 2644 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |