Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pc0 Structured version   Visualization version   GIF version

Theorem pc0 15397
 Description: The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc0 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)

Proof of Theorem pc0
Dummy variables 𝑥 𝑦 𝑛 𝑝 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 11265 . . 3 0 ∈ ℤ
2 zq 11670 . . 3 (0 ∈ ℤ → 0 ∈ ℚ)
31, 2ax-mp 5 . 2 0 ∈ ℚ
4 iftrue 4042 . . . 4 (𝑟 = 0 → if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))) = +∞)
54adantl 481 . . 3 ((𝑝 = 𝑃𝑟 = 0) → if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))) = +∞)
6 df-pc 15380 . . 3 pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))))
7 pnfex 9972 . . 3 +∞ ∈ V
85, 6, 7ovmpt2a 6689 . 2 ((𝑃 ∈ ℙ ∧ 0 ∈ ℚ) → (𝑃 pCnt 0) = +∞)
93, 8mpan2 703 1 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  {crab 2900  ifcif 4036   class class class wbr 4583  ℩cio 5766  (class class class)co 6549  supcsup 8229  ℝcr 9814  0cc0 9815  +∞cpnf 9950   < clt 9953   − cmin 10145   / cdiv 10563  ℕcn 10897  ℕ0cn0 11169  ℤcz 11254  ℚcq 11664  ↑cexp 12722   ∥ cdvds 14821  ℙcprime 15223   pCnt cpc 15379 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-z 11255  df-q 11665  df-pc 15380 This theorem is referenced by:  pcxcl  15403  pcge0  15404  pcdvdsb  15411  pcgcd1  15419  pc2dvds  15421  pcaddlem  15430  pcadd  15431
 Copyright terms: Public domain W3C validator