Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddval Structured version   Visualization version   GIF version

Theorem paddval 34102
Description: Projective subspace sum operation value. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddval ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
Distinct variable groups:   𝐴,𝑝   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞   𝑌,𝑝,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑟,𝑞)   𝐵(𝑟,𝑞,𝑝)   + (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   𝑋(𝑟)

Proof of Theorem paddval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 250 . 2 (𝐾𝐵𝐾𝐵)
2 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 fvex 6113 . . . 4 (Atoms‘𝐾) ∈ V
42, 3eqeltri 2684 . . 3 𝐴 ∈ V
54elpw2 4755 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
64elpw2 4755 . 2 (𝑌 ∈ 𝒫 𝐴𝑌𝐴)
7 paddfval.l . . . . . 6 = (le‘𝐾)
8 paddfval.j . . . . . 6 = (join‘𝐾)
9 paddfval.p . . . . . 6 + = (+𝑃𝐾)
107, 8, 2, 9paddfval 34101 . . . . 5 (𝐾𝐵+ = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
1110oveqd 6566 . . . 4 (𝐾𝐵 → (𝑋 + 𝑌) = (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌))
12113ad2ant1 1075 . . 3 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 + 𝑌) = (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌))
13 simpl 472 . . . . . 6 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴)
14 simpr 476 . . . . . 6 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → 𝑌 ∈ 𝒫 𝐴)
15 unexg 6857 . . . . . . 7 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋𝑌) ∈ V)
164rabex 4740 . . . . . . 7 {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)} ∈ V
17 unexg 6857 . . . . . . 7 (((𝑋𝑌) ∈ V ∧ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)} ∈ V) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V)
1815, 16, 17sylancl 693 . . . . . 6 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V)
1913, 14, 183jca 1235 . . . . 5 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V))
20193adant1 1072 . . . 4 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V))
21 uneq1 3722 . . . . . 6 (𝑚 = 𝑋 → (𝑚𝑛) = (𝑋𝑛))
22 rexeq 3116 . . . . . . 7 (𝑚 = 𝑋 → (∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)))
2322rabbidv 3164 . . . . . 6 (𝑚 = 𝑋 → {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)} = {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)})
2421, 23uneq12d 3730 . . . . 5 (𝑚 = 𝑋 → ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}) = ((𝑋𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)}))
25 uneq2 3723 . . . . . 6 (𝑛 = 𝑌 → (𝑋𝑛) = (𝑋𝑌))
26 rexeq 3116 . . . . . . . 8 (𝑛 = 𝑌 → (∃𝑟𝑛 𝑝 (𝑞 𝑟) ↔ ∃𝑟𝑌 𝑝 (𝑞 𝑟)))
2726rexbidv 3034 . . . . . . 7 (𝑛 = 𝑌 → (∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)))
2827rabbidv 3164 . . . . . 6 (𝑛 = 𝑌 → {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)} = {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)})
2925, 28uneq12d 3730 . . . . 5 (𝑛 = 𝑌 → ((𝑋𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)}) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
30 eqid 2610 . . . . 5 (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})) = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))
3124, 29, 30ovmpt2g 6693 . . . 4 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V) → (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
3220, 31syl 17 . . 3 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
3312, 32eqtrd 2644 . 2 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
341, 5, 6, 33syl3anbr 1362 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  Vcvv 3173  cun 3538  wss 3540  𝒫 cpw 4108   class class class wbr 4583  cfv 5804  (class class class)co 6549  cmpt2 6551  lecple 15775  joincjn 16767  Atomscatm 33568  +𝑃cpadd 34099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-padd 34100
This theorem is referenced by:  elpadd  34103  paddunssN  34112  paddcom  34117  paddssat  34118  sspadd1  34119  sspadd2  34120
  Copyright terms: Public domain W3C validator