Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddss1 Structured version   Visualization version   GIF version

 Description: Subset law for projective subspace sum. (unss1 3744 analog.) (Contributed by NM, 7-Mar-2012.)
Hypotheses
Ref Expression
Assertion
Ref Expression
paddss1 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍)))

Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3562 . . . . . . 7 (𝑋𝑌 → (𝑝𝑋𝑝𝑌))
21orim1d 880 . . . . . 6 (𝑋𝑌 → ((𝑝𝑋𝑝𝑍) → (𝑝𝑌𝑝𝑍)))
3 ssrexv 3630 . . . . . . 7 (𝑋𝑌 → (∃𝑞𝑋𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → ∃𝑞𝑌𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
43anim2d 587 . . . . . 6 (𝑋𝑌 → ((𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → (𝑝𝐴 ∧ ∃𝑞𝑌𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
52, 4orim12d 879 . . . . 5 (𝑋𝑌 → (((𝑝𝑋𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → ((𝑝𝑌𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑌𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
65adantl 481 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (((𝑝𝑋𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → ((𝑝𝑌𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑌𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
7 simpl1 1057 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝐾𝐵)
8 sstr 3576 . . . . . . 7 ((𝑋𝑌𝑌𝐴) → 𝑋𝐴)
983ad2antr2 1220 . . . . . 6 ((𝑋𝑌 ∧ (𝐾𝐵𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
109ancoms 468 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑋𝐴)
11 simpl3 1059 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑍𝐴)
12 eqid 2610 . . . . . 6 (le‘𝐾) = (le‘𝐾)
13 eqid 2610 . . . . . 6 (join‘𝐾) = (join‘𝐾)
14 padd0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
15 padd0.p . . . . . 6 + = (+𝑃𝐾)
1612, 13, 14, 15elpadd 34103 . . . . 5 ((𝐾𝐵𝑋𝐴𝑍𝐴) → (𝑝 ∈ (𝑋 + 𝑍) ↔ ((𝑝𝑋𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
177, 10, 11, 16syl3anc 1318 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑋 + 𝑍) ↔ ((𝑝𝑋𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
1812, 13, 14, 15elpadd 34103 . . . . 5 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑝 ∈ (𝑌 + 𝑍) ↔ ((𝑝𝑌𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑌𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
1918adantr 480 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑌 + 𝑍) ↔ ((𝑝𝑌𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑌𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
206, 17, 193imtr4d 282 . . 3 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑋 + 𝑍) → 𝑝 ∈ (𝑌 + 𝑍)))
2120ssrdv 3574 . 2 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍))
2221ex 449 1 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   ⊆ wss 3540   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  lecple 15775  joincjn 16767  Atomscatm 33568  +𝑃cpadd 34099 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-padd 34100 This theorem is referenced by:  paddss12  34123  paddasslem12  34135  pmod1i  34152  pl42lem3N  34285
 Copyright terms: Public domain W3C validator