Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem5 Structured version   Visualization version   GIF version

Theorem paddasslem5 34128
Description: Lemma for paddass 34142. Show 𝑠𝑧 by contradiction. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
paddasslem5 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦))) → 𝑠𝑧)

Proof of Theorem paddasslem5
StepHypRef Expression
1 breq1 4586 . . . . . . . . 9 (𝑠 = 𝑧 → (𝑠 (𝑥 𝑦) ↔ 𝑧 (𝑥 𝑦)))
21biimpac 502 . . . . . . . 8 ((𝑠 (𝑥 𝑦) ∧ 𝑠 = 𝑧) → 𝑧 (𝑥 𝑦))
3 eqid 2610 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
4 paddasslem.l . . . . . . . . . 10 = (le‘𝐾)
5 simpll1 1093 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝐾 ∈ HL)
6 hllat 33668 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
75, 6syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝐾 ∈ Lat)
8 simpll2 1094 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟𝐴)
9 paddasslem.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
103, 9atbase 33594 . . . . . . . . . . 11 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
118, 10syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 ∈ (Base‘𝐾))
12 simp32 1091 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
1312ad2antrr 758 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦𝐴)
143, 9atbase 33594 . . . . . . . . . . . 12 (𝑦𝐴𝑦 ∈ (Base‘𝐾))
1513, 14syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦 ∈ (Base‘𝐾))
16 simp33 1092 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
1716ad2antrr 758 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧𝐴)
183, 9atbase 33594 . . . . . . . . . . . 12 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧 ∈ (Base‘𝐾))
20 paddasslem.j . . . . . . . . . . . 12 = (join‘𝐾)
213, 20latjcl 16874 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑦 𝑧) ∈ (Base‘𝐾))
227, 15, 19, 21syl3anc 1318 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) ∈ (Base‘𝐾))
23 simp31 1090 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑥𝐴)
2423ad2antrr 758 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑥𝐴)
253, 9atbase 33594 . . . . . . . . . . . 12 (𝑥𝐴𝑥 ∈ (Base‘𝐾))
2624, 25syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑥 ∈ (Base‘𝐾))
273, 20latjcl 16874 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥 𝑦) ∈ (Base‘𝐾))
287, 26, 15, 27syl3anc 1318 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑥 𝑦) ∈ (Base‘𝐾))
29 simplr 788 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 (𝑦 𝑧))
304, 20, 9hlatlej2 33680 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑥𝐴𝑦𝐴) → 𝑦 (𝑥 𝑦))
315, 24, 13, 30syl3anc 1318 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦 (𝑥 𝑦))
32 simpr 476 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧 (𝑥 𝑦))
333, 4, 20latjle12 16885 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑥 𝑦) ∈ (Base‘𝐾))) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) ↔ (𝑦 𝑧) (𝑥 𝑦)))
3433biimpd 218 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑥 𝑦) ∈ (Base‘𝐾))) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦)))
357, 15, 19, 28, 34syl13anc 1320 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦)))
3631, 32, 35mp2and 711 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦))
373, 4, 7, 11, 22, 28, 29, 36lattrd 16881 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 (𝑥 𝑦))
3837ex 449 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) → (𝑧 (𝑥 𝑦) → 𝑟 (𝑥 𝑦)))
392, 38syl5 33 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) → ((𝑠 (𝑥 𝑦) ∧ 𝑠 = 𝑧) → 𝑟 (𝑥 𝑦)))
4039expdimp 452 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑠 (𝑥 𝑦)) → (𝑠 = 𝑧𝑟 (𝑥 𝑦)))
4140necon3bd 2796 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑠 (𝑥 𝑦)) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))
4241exp31 628 . . . 4 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑟 (𝑦 𝑧) → (𝑠 (𝑥 𝑦) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))))
4342com23 84 . . 3 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑠 (𝑥 𝑦) → (𝑟 (𝑦 𝑧) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))))
4443com24 93 . 2 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (¬ 𝑟 (𝑥 𝑦) → (𝑟 (𝑦 𝑧) → (𝑠 (𝑥 𝑦) → 𝑠𝑧))))
45443imp2 1274 1 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦))) → 𝑠𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Latclat 16868  Atomscatm 33568  HLchlt 33655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-lat 16869  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656
This theorem is referenced by:  paddasslem7  34130
  Copyright terms: Public domain W3C validator